Signals and Systems EE235 Lecture 29 Leo Lam © 2010-2012 Today’s menu • The lost Sampling slides • Communications (intro) Leo Lam © 2010-2012 Sampling • Convert a continuous.
Download ReportTranscript Signals and Systems EE235 Lecture 29 Leo Lam © 2010-2012 Today’s menu • The lost Sampling slides • Communications (intro) Leo Lam © 2010-2012 Sampling • Convert a continuous.
Signals and Systems EE235 Lecture 29 Leo Lam © 2010-2012 Today’s menu • The lost Sampling slides • Communications (intro) Leo Lam © 2010-2012 Sampling • Convert a continuous time signal into a series of regularly spaced samples, a discrete-time signal. • Sampling is multiplying with an impulse train t multiply = 0 t TS t Leo Lam © 2010-2012 3 Sampling • Sampling signal with sampling period Ts is: xs (t ) n x(nT ) (t nT ) n s s • Note that Sampling is NOT LTI sampler Leo Lam © 2010-2012 4 Sampling • Sampling effect in frequency domain: • Need to find: Xs(w) • First recall: T 1/T 2w0 Leo Lam © 2010-2012 w0 0 time w0 2w0 3w0 Fourier spectra 5 Sampling • Sampling effect in frequency domain: • In Fourier domain: Impulse train in time impulse train in frequency, dk=1/Ts distributive What does this property mean? Leo Lam © 2010-2012 6 Sampling • Graphically: 1 X s (w ) Ts 2 X w n Ts n • In Fourier domain: 1 X (w X()w) Ts bandwidth 0 • No info loss if no overlap (fully reconstructible) • Reconstruction = Ideal low pass filter Leo Lam © 2010-2012 Sampling • Graphically: 1 X s (w ) Ts 2 X w n Ts n • In Fourier domain: 0 • Overlap = Aliasing if • To avoid Alisasing: Nyquist Frequency (min. lossless) • Equivalently: Leo Lam © 2010-2012 Shannon’s Sampling Theorem Sampling (in time) • Time domain representation cos(2100t) 100 Hz Fs=1000 Fs=500 Fs=250 Fs=125 < 2*100 cos(225t) Frequency wraparound, sounds like Fs=25 (Works in spatial frequency, too!) Leo Lam © 2010-2012 Aliasing Summary: Sampling • Review: – Sampling in time = replication in frequency domain – Safe sampling rate (Nyquist Rate), Shannon theorem – Aliasing – Reconstruction (via low-pass filter) • More topics: – Practical issues: – Reconstruction with non-ideal filters – sampling signals that are not band-limited (infinite bandwidth) • Reconstruction viewed in time domain: interpolate with sinc function Leo Lam © 2010-2012 Onto… • Communications (intro) Leo Lam © 2010-2012 Communications • Practical problem – One wire vs. hundreds of channels – One room vs. hundreds of people • Dividing the wire – how? – Time – Frequency – Orthogonal signals (like CDMA) Leo Lam © 2010-2012 FDM (Frequency Division Multiplexing) • Focus on Amplitude Modulation (AM) • From Fourier Transform: X x(t) y(t) X(w) m(t)=ejw0t w Time Leo Lam © 2010-2012 Y(w)=X(ww0) w0 FOURIER w FDM (Frequency Division Multiplexing) • Amplitude Modulation (AM) F(w) w -5 5 w F (w)* (w 5) (w 5) Multiply by cosine! • Frequency change – NOT LTI! Leo Lam © 2010-2012 Double Side Band Amplitude Modulation • FDM – DSB modulation in time domain x(t) x(t)+B y(t ) [ x(t ) B]cos(wct ) Leo Lam © 2010-2012 Double Side Band Amplitude Modulation • FDM – DSB modulation in freq. domain y(t ) [ x(t ) B]cos(wct ) • For simplicity, let B=0 1 Y (w ) X (w ) 2 B (w ) (w wc ) (w wc ) 2 1 Y (w ) X (w ) (w wc ) (w wc ) 2 1 1 Y (w ) X (w wc ) X (w wc ) 2 2 X(w) 0 Leo Lam © 2010-2012 Y(w) 1 ! –!C 0 1/2 !C ! DSB – How it’s done. • Modulation (Low-Pass First! Why?) X1(w) x1(t) 1 ! 0 cos(w1t) X2(w) y(t) x2(t) 1 ! 0 0 cos(w2t) X3(w) x3(t) 1 0 ! cos(w3t) Leo Lam © 2010-2012 Y(w) !1 1/2 !2 !3 ! DSB – Demodulation • Band-pass, Mix, Low-Pass m(t)=cos(w0t) y(t)=x(t)cos(w0t) x Y(w) z(t) = y(t)m(t) = x(t)[cos(w0t)]2 = 0.5x(t)[1+cos(2w0t)] Z(w) 2w0 w0 w0 w What assumptions? -- Matched phase of mod & demod cosines -- No noise -- No delay -- Ideal LPF Leo Lam © 2010-2012 2w0 LPF X(w) w w DSB – Demodulation (signal flow) • Band-pass, Mix, Low-Pass BPF1 LPF x1(t) 0 !1 1/2 y(t) !2 !3 BPF2 LPF x2(t) ! LPF cos(w3t) Leo Lam © 2010-2012 ! X2(w) 1 ! 0 cos(w2t) BPF3 1 0 cos(w1t) Y(w) X1(w) x3(t) X3(w) 0 1 ! DSB in Real Life (Frequency Division) • • • • • • • • • • KARI 550 kHz Day DA2 BLAINE WA US 5.0 kW KPQ 560 kHz Day DAN WENATCHEE WA US 5.0 kW KVI 570 kHz Unl ND1 SEATTLE WA US 5.0 kW KQNT 590 kHz Unl ND1 SPOKANE WA US 5.0 kW KONA 610 kHz Day DA2 KENNEWICK-RICHLAND-P WA US 5.0 kW KCIS 630 kHz Day DAN EDMONDS WA US 5.0 kW KAPS 660 kHz Day DA2 MOUNT VERNON WA US 10.0 kW KOMW 680 kHz Day NDD OMAK WA US 5.0 kW KXLX 700 kHz Day DAN AIRWAY HEIGHTS WA US 10.0 kW KIRO 710 kHz Day DAN SEATTLE WA US 50.0 kW Leo Lam © 2010-2012