Common Core Standard 7.EE.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. Student Objective:
Download ReportTranscript Common Core Standard 7.EE.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. Student Objective:
Common Core Standard 7.EE.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. Student Objective: Use the distributive property to simplify variable expressions. Distributive Property a(b + c) = ab + ac Order of Operations 6(3 + 5) 6(8) 48 Distributive Property 6(3 + 5) 6(3) + 6(5) 18 + 30 48 Use the distributive property to simplify. 1) 3(x + 7) 6) x(a + m) ax + mx 3x + 21 2) 2(a + 4) 7) 4(3 + r) 2a + 8 12 + 4r 3) 7(8 + m) 8) 2(x + 8) 2x + 16 56 + 7m 4) 3(4 + a) 9) 7(2m + 3y + 4) 12 + 3a 5) (3 + k)5 15 + 5k 14m + 21y + 28 10) (6 + 2y + a)3 18 + 6y + 3a Use the distributive property to simplify. 1) 4(y + 7) 6) a(c + d) 4y + 28 ac + ad 2) 3(b + 6) 7) 8(3 + r) 3b + 18 24 + 8r 3) 5(9 + m) 8) 4(x + y + 1) 45 + 5m 4x + 4y + 4 4) 5(4 + a) 9) 5(2m + 3 + t) 20 + 5a 10m + 15 + 5t 5) (7 + k)6 10) (11 + 2y)+3y 42 + 6k 11 + 5y Geometric Model for Distributive Property 3 7 4 Two ways to find the total area. Width by total length 4(3 + 7) Sum of smaller rectangles Geometric Model for Distributive Property 3 7 4 4(3) 4(7) Two ways to find the total area. Width by total length 4(3 + 7) Sum of smaller rectangles = 4(3) + 4(7) 4(10) 12 + 28 40 40 Geometric Model for Distributive Property 4 x 9 Two ways to find the total area. Width by total length 9(4 + x) Sum of smaller rectangles = 9(4) + 9(x) Geometric Model for Distributive Property 4 x 9 9(4) 9(x) Two ways to find the total area. Width by total length 9(4 + x) Does Order of Operations help to simplify here? Sum of smaller rectangles = 9(4) + 9(x) 36 + 9x Factoring Find the missing factor. 1) 15x (5x)( 3 ) 2) 12a (2a)( 6 ) 3) 2x (x)( 2 ) 4) 36a (9a)( 4 ) 5) 27x (3x)( 9 ) Factoring GCF - Greatest Common Factor Find the GCF of the following mentally. 1) 15x 2) 30 3) 14m 4) 16k 12 42a 21m 40 GCF: GCF: 3 6 GCF: GCF: 8 7m Factoring One type involves the Distributive Property in reverse. Factor the following expression. FIND GCF first: 1) 12m 10 GCF: ___ 2 2( 6m 5 ) 2) 14a 7 GCF: ___ 7 7( 2a 1 ) 3) 15x 20y 30 GCF: ___ 5 5( 3x 4y 6 ) 4) 8m 12x 20 GCF: ___ 4 4( 2m 3x 5 ) Factoring One type involves the Distributive Property in reverse. Factor the following expression. 5) 22k 33 11( 2k 3 ) 6) 15 35t 5( 3 7t ) 7) 24c 12d 18 6( 4c 2d 3 ) 8) 9b 6 21a 3( 3b 2 7a ) Like Terms Variable terms that differ only in their coefficients. Variables must be same letters and powers (exponents). Ex) x can only combine with other x terms. x2 can only combine with other x2 terms. Unlike Terms 7x 3y Like Terms 7x 3x 2 5y y 5y y 10xy 2 2 a b 3 2yx 2a 3ab 4p 2 6ba p 2 2 2 5x y 4p 7 xy p 2 2 Simplify by combining like terms. 1) 7x + 4y + 2x + y 5) 4k + (2j) + 6k + j 9x + 5y 2) 3m + 10n + 4m + 1 7m + 10n + 1 3) 7x + 3y 7x + 3y 4) 6x + (5x) + 2x + 3 13x + 3 10k + 3j 6) 10 + 4x + 3y + 17x 21x + 3y + 10 7) 3y2 y 6y2 y 9y 2y 2 3 2 2 8) m 4t m2 t 7 7 5 m 2 5t 7 Simplify the expression using the Distributive Property and then combining like terms. 1) 3(a 4) 2a 3a 12 2a 5a 12 2) 5x 4(x 7) 5x 4x 28 9x 28 3) 2a 6(5 a) a 2a 30 6a a 9a 30 4) 3(b 4) 2(b 5) 3b 12 2b 10 5b 22 Simplify each variable expression. 5) 7(x + 4) + 2x 8) 3(b + 2) + 6b 7x + 28 + 2x 9x + 28 6) 5x + 3(x + 1) 5x + 3x + 3 8x + 3 7) a + 2(4 + a ) + 1 a + 8 + 2a + 1 3a + 9 3b + 6 + 6b 9b + 6 9) 2(3m + 1) + 4m 6m + 2 + 4m 10m + 2 10) 3(k + m) + 5(k + 2m) 3k + 3m + 5k + 10m 8k + 13m