ENGI 1313 Mechanics I Lecture 04: Force Vectors and System of Coplanar Forces Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University.

Download Report

Transcript ENGI 1313 Mechanics I Lecture 04: Force Vectors and System of Coplanar Forces Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University.

ENGI 1313 Mechanics I
Lecture 04:
Force Vectors and System of
Coplanar Forces
Shawn Kenny, Ph.D., P.Eng.
Assistant Professor
Faculty of Engineering and Applied Science
Memorial University of Newfoundland
[email protected]
Tutorial Questions

SI Units and Use
Section 1.4 Page 9
 Use a single prefix
 Magnitude between 0.1 and 1000

Pa

N
m
2

100 kN
5 mm
2
 10
MPa

MN
m
2
2

10

5  10

2  3   6 
2
10  N
3
2

10 N

 10

3
© 2007 S. Kenny, Ph.D., P.Eng.

2  3 

6

N
2
5 10
m
m 
3
2
 mm
mm 
N
N
GN
11

0
.
2
10

20
 20 GPa
2
2
2
5m
m
m
6

10
mm 

m 

10 N
10 mm
6
2

6
2

10
6  6 
mm
2
ENGI 1313 Statics I – Lecture 04
N

N
mm
2
Tutorial Questions

SI Units and Use
Section 1.4 Page 9
 Use a single prefix
 Magnitude between 0.1 and 1000

50 kN 60 nm   50 10 3 N  60 10  9  m 
 50  60 10
 3 10
3
3
3   9 
N  m  3
© 2007 S. Kenny, Ph.D., P.Eng.
N  m  3 10 10 N  m
3
6
mN  m
ENGI 1313 Statics I – Lecture 04
Tutorial Questions

SI Units and Use
Section 1.4 Page 9
 Do not use compound prefixes

 kg  10
4
6
10  g  10
3
© 2007 S. Kenny, Ph.D., P.Eng.
6  3
 g  10  g  mg
3
ENGI 1313 Statics I – Lecture 04
Chapter 2 Objectives
to review concepts from linear algebra
 to sum forces, determine force resultants
and resolve force components for 2D
vectors using Parallelogram Law
 to express force and position in Cartesian
vector form
 to introduce the concept of dot product

5
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Lecture 04 Objectives
to sum force vectors, determine force
resultants, and resolve force components
for 2D vectors using Scalar or Cartesian
Vector Notation
 to demonstrate by example

6
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Why an Alternate Approach?

Application of Parallelogram Law

Cumbersome with a large number of coplanar
forces due to successive application
• Recall Lecture 02 (Slide 13)
7
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Parallelogram Law (Lecture 02)

Multiple Force Vectors

F2

F1
8

F


F1  F2

F2
© 2007 S. Kenny, Ph.D., P.Eng.

FR





F1  F2  F3



F1  F2  F3



F1  F2

F3
ENGI 1313 Statics I – Lecture 04

What is the Alternate Approach?
Resolve Force Components
 Algebraic Summation

Force Vectors
9
© 2007 S. Kenny, Ph.D., P.Eng.
Component
Vectors

F Rx  F Rx 
F
x

F Ry  F Ry 
F
y
Recall Lecture 02 (Slide 9)
ENGI 1313 Statics I – Lecture 04
What is the Alternate Approach?
Resolve Force Components
 Algebraic Summation
 Form Resultant Force

Force Vectors
10
© 2007 S. Kenny, Ph.D., P.Eng.
Component
Vectors
Resultant Force
Vector
ENGI 1313 Statics I – Lecture 04
Coplanar Force Vector Summation
How to resolve a system of forces into
rectangular components and determine
the resultant force?
 Two Notations Used


(1) Scalar Notation
• More familiar approach

(2) Cartesian Vector Notation
• Useful in applications of linear algebra
• Advantageous over scalar notation for 3D
11
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04

Characteristics
Rectangular
coordinate system
 Unique spatial
position
 Vector
algebra
 Analytical
geometry

12
© 2007 S. Kenny, Ph.D., P.Eng.
Ordinate
Cartesian Coordinate System
Abscissa
ENGI 1313 Statics I – Lecture 04
Rectangular Force Components
Axes Must be Orthogonal
 Axes Orientation Does not Matter

F = Fx + Fy
13
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Resolve Force Components

Known: Force Vector and Orientation
Angle



F  Fx  Fy


F x  F x  F cos 

14
© 2007 S. Kenny, Ph.D., P.Eng.


F y  F y  F sin 
ENGI 1313 Statics I – Lecture 04
Resolve Force Components

Known: Force Vector and Slope



F  Fx  Fy

 L 
F x  F x  F  x 
 Lh 
Lh
Ly
Lx
15
© 2007 S. Kenny, Ph.D., P.Eng.

  Ly
F y  F y  F 
 Lh
ENGI 1313 Statics I – Lecture 04




Determine Resultant Force
Known: Force Components
 Resultant Force Magnitude


Pythagorean theorem

F 



2
2
Fx  Fy
F
Resultant Force Direction

Trigonometry
  tan
16
y
1
Fy
Fy

Fx
Fx
© 2007 S. Kenny, Ph.D., P.Eng.
x
ENGI 1313 Statics I – Lecture 04
Notation – Summation Coplanar Forces

Scalar Notation
FR  FX + FY
Common
1. Magnitude: FX & FY
2. Sense: + & -
3. Direction: Orthogonal X & Y axes

FR
Cartesian Vector Notation
^
+Y +j
^
FY
F = FX i + FY j
-X
-i
3. Direction: Unit vectors
17
^
Unit Vector; i = FX
^
Unit Vector; j = FY
FX
FY
© 2007 S. Kenny, Ph.D., P.Eng.
+X
+i
FX
ENGI 1313 Statics I – Lecture 04
-Y -j
Unit Vector

Lecture 3
Scalar
• Magnitude and sense (+,-)
 Vector
• Magnitude, sense (+,-) and direction

 Unit Vector
A  4 units
 Vector
• Magnitude


4 units

Positive

X-axis
+x
• Sense
• Direction
18

A
uˆ A
© 2007 S. Kenny, Ph.D., P.Eng.

A
 
A
ENGI 1313 Statics I – Lecture 04
Coplanar Force Vector Summation

Step 1: Define System of Forces
Rectangular coordinate system
 Force vectors F1, F2 and F3

Force Vectors
19
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Coplanar Force Vector Summation

Step 2: Resolve Component Forces


Fnx  Fnx  Fn cos 



Fn  Fnx  Fny


Fny  Fny  Fn sin 
Force Vectors
20
Component
Vectors
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Coplanar Force Vector Summation

Step 3: Sum System Force Components

Obtain resultant force vector components

FRx  FRx 
N
F
x

FRy  FRy 
n 1
Force Vectors
21
F
y
n 1
Component
Vectors
© 2007 S. Kenny, Ph.D., P.Eng.
N
Resultant Force
Vector
ENGI 1313 Statics I – Lecture 04
Coplanar Force Vector Summation

Step 3: Sum System Force Components

Scalar notation
N
 
F
x
FRx  F1 x  F2 x  F3 x
F
y
F Ry  F1 y  F 2 y  F 3 y
n 1
 
Force Vectors
22
Component
Vectors
© 2007 S. Kenny, Ph.D., P.Eng.
Resultant Force
Vector
ENGI 1313 Statics I – Lecture 04
Coplanar Force Vector Summation

Step 4: Determine Resultant Force Vector

Magnitude, sense and direction

F 


2
2
Fx  Fy
Force Vectors
23
  tan
Component
Vectors
© 2007 S. Kenny, Ph.D., P.Eng.
1
Fy
Fx
Resultant Force
Vector
ENGI 1313 Statics I – Lecture 04
Coplanar Force Vector Summation

Step 3: Sum System Force Components

Cartesian vector notation




F R  F1  F 2  F 3







FR  F1 x i  F1 y j   F2 x i  F2 y j  F3 x i  F3 y j

 
 



FR  F1 x  F2 x  F3 x  i  F1 y  F2 y  F3 y  j

Unit Vector; ^i = FX
FX
Force Vectors
24
Component
Vectors
© 2007 S. Kenny, Ph.D., P.Eng.
Resultant Force
Vector
ENGI 1313 Statics I – Lecture 04
Comprehension Quiz 4-01
y

Resolve F along x and y
axes in Cartesian
F ĵ = -80 cos 30
vector notation.
F = { ___________ } N
y
x
30°
F = 80 N
Fx = 80 sin30
A) 80 cos 30° i - 80 sin 30° j
 B) 80 sin 30° i + 80 cos 30° j
 C) 80 sin 30° i - 80 cos 30° j
 D) 80 cos 30° i + 80 sin 30° j

C)
25





F  80 sin 30 i  80 cos 30 j N

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 04
Comprehension Quiz 4-02

Determine the magnitude of the resultant
force when
F
j
R
F1
F1
F1 = { 10 î + 20 ĵ } N
F2 = { 20 î + 20 ĵ } N
F2
i
A) 30 N B) 40 N C) 50 N D) 60 N E) 70 N

F 

F 
26





10  20  i  20  20  j N  30 i  40 j N

30
N   40 N   50 N
2
2
© 2007 S. Kenny, Ph.D., P.Eng.


C) 50 N
ENGI 1313 Statics I – Lecture 04
Example Problem 4-01


Find the magnitude and angle of the resultant
force acting on the bracket.
Solution Plan




27
Step 1: Define
system of forces
Step 2: Resolve
component forces
Step 3: Sum system
force components
Step 4: Determine resultant
force vector, magnitude and direction
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Example Problem 4-01 (cont.)

Step 2: Resolve Components


F1
Cartesian vector form, F1


F1x = 15kN sin 40


15 sin 40  i  15 cos 40  j kN

F1y = 15kN cos 40
F1x
F1y
28
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Example Problem 4-01 (cont.)

Step 2: Resolve Components


F2
Cartesian vector form, F2


  26

 12  
 5 

 i  26 

 13 
 13 
F2x = -26kN (12/13)
F2y = 26kN (5/13)

j  kN

F2y
F2x
29
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Example Problem 4-01 (cont.)

Step 2: Resolve Components


F3
Cartesian vector form, F3


F3x = 36kN cos 30


36 cos 30  i  36 sin 30  j kN

F3y = 36kN sin 30
F3x
F3y
30
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Example Problem 4-01 (cont.)

Step 2: Resolve Components


F1

F2

F3


F1

F2

F3
31
Cartesian vector form









15 sin 40  i  15 cos 40  j kN

12   
5  
 i   26
 j  kN
   26
13 
13  




36 cos 30  i  36 sin 30  j kN
Therefore






9 . 642 i  11 . 491 j kN


 24 i  10 j kN


31 . 18 i  18 j kN


© 2007 S. Kenny, Ph.D., P.Eng.



F1x
F1y
F2y
F3x
F2x
ENGI 1313 Statics I – Lecture 04
F3y
Example Problem 4-01 (cont.)

Step 3: Sum Collinear Forces

Collinear
Cartesian vector form

F1

F2

F3

FR 
32




F1y


9 . 642 i  11 . 491 j kN


 24 i  10 j kN


31 . 18 i  18 j kN




F2y

F1x F3x
F2x
F3y


9 . 642  24  31 . 18  i  11 . 49  10  18  j kN

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 04
Example Problem 4-01 (cont.)

Step 3: Sum Collinear Forces

Resultant components
Cartesian vector form

F1

F2

F3


9 . 642 i  11 . 491 j kN


 24 i  10 j kN


31 . 18 i  18 j kN

FR 









FRy


9 . 642  24  31 . 18  i  11 . 49  10  18  j kN





FR  16 . 82 i  3 . 49 j kN

33
FRx

© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Example Problem 4-01 (cont.)

Step 4: Determine Resultant Force Vector

F 
16 . 82
  tan
1
kN
2
 3 . 49 N   17 . 2 kN
3 . 49 kN
2
 11 . 7
16 . 82 kN

ccw
x  axis

FR
 = 11.7
FRy
FRx
34
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Group Problem 4-01


Find the magnitude and
angle of the resultant
force acting on the bracket.
Solution Plan




35
Step 1: Define system of
forces
Step 2: Resolve component
forces
Step 3: Sum system force components
Step 4: Determine resultant force vector, magnitude
and direction
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Group Problem 4-01 (cont.)

Step 2: Resolve Force
Components
F1x

F1


36
F1y
 
4  
3
 i   850
 j N
  850
5
5 

 


680 i  510 j N


© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Group Problem 4-01 (cont.)

Step 2: Resolve Force
Components

F1



F2


37
 
4  
3
 i   850
 j N
  850
5
5 

 


680 i  510 j N


F2y

F2x

 625 sin 30  i  625 cos 30
 312 . 5 i  541 . 3 j N


© 2007 S. Kenny, Ph.D., P.Eng.



j N

ENGI 1313 Statics I – Lecture 04
Group Problem 4-01 (cont.)

Step 2: Resolve Force
Components

F1



F2



38
F3y
 
4  
3
 i   850
 j N
  850
5
5 

 


680 i  510 j N




 625 sin 30  i  625 cos 30
 312 . 5 i  541 . 3 j N


 750 cos 45 i  750 sin 45
 530 . 3 i  530 . 3 j N


F3
F3x




j N


j N



© 2007 S. Kenny, Ph.D., P.Eng.



ENGI 1313 Statics I – Lecture 04
Group Problem 4-01 (cont.)

Step 3: Sum
Collinear Forces

F1




F2



F3
FRi
 
4  
3
 i   850
 j N
  850
5
5 

 


680 i  510 j N





  625 sin 30  i  625 cos 30  j N
  312 . 5 i  541 . 3 j  N




  750 cos 45 i  750 sin 45  j N
  530 . 3 i  530 . 3 j  N


FRj
FR



FR  680  312 . 5  530 . 3  i    510  541 . 3  530 . 3  j N

FR
39



  162 . 8 i  521 j  N
© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 04
Group Problem 4-01 (cont.)

Step 4: Determine
Resultant Force Vector



FR   162 . 8 i  521 j N


F 
162 . 8 N 2
  tan
40

1
 521 N   546 N
521 N
FR
2
 72 . 6 ( local )  253 ( ccw x  axis )


162 . 8 N
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
Classification of Textbook Problems

41
Hibbeler (2007)
Problem Set
Concept
Degree of
Difficulty
Estimated
Time
2-31 to 2-32
Vector Addition Parallelogram Law
Medium
10-15min
2-33 to 2-38
Vector Addition Parallelogram Law
Easy
5-10min
2-39 to 2-41
Resultant Force
Easy
5-10min
2-42 to 2-55
Resultant & Components
Medium
10-15min
2-56
Resultant & Components
Hard
20min
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04
References
Hibbeler (2007)
 http://wps.prenhall.com/esm_hibbeler_eng
mech_1
 en.wikipedia.org

42
© 2007 S. Kenny, Ph.D., P.Eng.
ENGI 1313 Statics I – Lecture 04