Drag Reduction of MAV by Biplane Effect Chinnapat THIPYOPAS Graduate student, Department of Aerodynamics and Jean-Marc MOSCHETTA Associate Professor of Aerodynamics, Department of Aerodynamics Ecole Nationale Supérieure de.
Download ReportTranscript Drag Reduction of MAV by Biplane Effect Chinnapat THIPYOPAS Graduate student, Department of Aerodynamics and Jean-Marc MOSCHETTA Associate Professor of Aerodynamics, Department of Aerodynamics Ecole Nationale Supérieure de.
Drag Reduction of MAV by Biplane Effect Chinnapat THIPYOPAS Graduate student, Department of Aerodynamics and Jean-Marc MOSCHETTA Associate Professor of Aerodynamics, Department of Aerodynamics Ecole Nationale Supérieure de l’Aéronautique et de l’Espace (SUPAERO) 10 Av. Ed. Belin, Toulouse, France P1/29 Contents • • • • • Introduction Part 1 Optimization - (Experimental) - (Numerical) Part 2 Biplane Combinations Part 3 Propeller Influence Conclusions Department of Aerodynamics SUPAERO P2/29 Contents • • • • • Introduction Part 1 Optimization - (Experimental) - (Numerical) Part 2 Biplane Combinations Part 3 Propeller Influence Conclusions Department of Aerodynamics SUPAERO P3/29 Monoplane MAV concepts Minus-Kiool 57g - 20.6 cm Plaster 64g - 23 cm Department of Aerodynamics SUPAERO P4/29 Department of Aerodynamics SUPAERO Monoplane-MAVs Plaster, SUPAERO Maxi-Kiool, SUPAERO Induced Drag 76%* Drenalyne, SUPAERO Total Drag = Parasite Drag + Induced drag 100 % * J.L’HENAFF, SUPAERO 2004 20-30 % Biplane Concept !! 70-80 % P5/29 Department of Aerodynamics SUPAERO Monoplane vs. biplane wing drag = Parasite Drag + Induced Drag Parasite drag is a function of Skin-Friction which depends on Wing Chord Induced Drag is very strongly effected by Aspect Ratio Constant lift, speed & overall dimension 1 DF Di Pmax 2 DF / 2 Di Pmax 2 DF 2 Di / 2 Pmax P6/29 Contents • • • • • Introduction Part 1 Optimization - (Experimental) - (Numerical) Part 2 Biplane Combinations Part 3 Propeller Influence Conclusions Department of Aerodynamics SUPAERO P7/29 Optimization process Design Constraints • Maximum overall dimension : 20 cm • Lift at 10 m/s = Weight = 80 grams • Manoeuvrability : (C ) L cruise (CL ) max 2 20 grams min. for payload Cost function • Minimum Drag at cruise condition Department of Aerodynamics SUPAERO P8/29 Experimental setup • Wind tunnel – Test Section 45cm x 45cm – Velocity 10 m/s • Measurement – 3-component balance • Models – 16 flat-plate wing models • Aspect ratio 1 – 4 • Taper ratio 0.2 – 1.0 • Sweep angle 0 - 50° AR1, Taper 1, No Swept • Reference surface/length – For comparison, every model is referenced by same area, length Department of Aerodynamics SUPAERO Strut 20cm. AR2.5, Taper0.6, Swept25° P9/29 Model’s Drag Correction Strut Model Model is not attached to strut Strut Dragmod el Dragtotal Dragstrut Department of Aerodynamics SUPAERO P10/29 Department of Aerodynamics SUPAERO Results No. Model Name Area * CL * C D min C D min C L max * K Monoplane AC (cm.) CD L/D Biplane AoA CD L/D AoA 0 Disc 314.2 2.8223 0.0232 0.0147 1.997 0.3578 8.32 0.127 5.052 8.56 0.055 5.871 4.6 1 A1S0T0.2 144.0 2.1647 0.0146 0.0202 0.887 0.5127 6.176 0.293 2.209 23 0.085 3.803 12.3 2 A1S0T1 200.0 2.5556 0.0219 0.0214 1.449 0.3888 5.336 0.189 3.399 14.6 0.073 4.39 8.56 3 A1S25T0.6 224.8 2.4667 0.0112 0.01 1.621 0.3857 8.926 0.164 3.953 13.5 0.058 5.532 7.56 4 A1S50T0.2 144.0 2.4114 0.0163 0.0224 1.046 0.4178 9.967 0.256 2.530 21 0.078 4.128 11.3 5 A1S50T1 130.2 2.4902 0.0183 0.0281 0.944 0.3738 7.633 0.252 2.552 21.8 0.081 3.967 12.2 6 A2,5S0T0.6 146.7 3.7786 0.02 0.0273 0.627 0.2814 3.099 - - - 0.055 6.036 6.38 7 A2,5S0T1 137.9 3.556 0.0112 0.0162 0.572 0.2966 2.43 - - - 0.054 5.899 7.44 8 A2,5S25T0.6 146.7 3.6615 0.0172 0.0234 0.619 0.3032 4.904 - - - 0.052 6.288 6.38 9 A2,5S25T1 137.9 4.0961 0.02 0.029 0.601 0.2683 4.503 - - - 0.061 5.227 6.5 10 A2,5S50T1 102.9 3.0513 0.0067 0.0131 0.535 0.319 5.766 - - - 0.071 4.552 11.5 11 A4S0T0.2 99.3 4.3273 0.0166 0.0326 0.355 0.2413 2.453 - - - 0.060 5.404 8.46 12 A4S0T1 94.1 4.5539 0.0167 0.0345 0.381 0.2455 1.497 - - - 0.074 4.386 9.83 13 A4S25T0.6 96.6 4.9468 0.0133 0.0275 0.418 0.2363 3.261 - - - 0.058 5.613 7.6 14 A4S50T0.2 84.1 3.3926 0.0124 0.0295 0.481 0.2943 5.221 - - - 0.092 3.499 14.3 15 A4S50T0.6 79.5 3.4883 0.0095 0.0239 0.442 0.3056 5.95 - - - 0.091 3.533 14.9 16 A4S50T1 76.7 3.5983 0.0141 0.0368 0.424 0.2781 5.311 - - - 0.091 3.508 15.1 Red color is a value referenced by wing’s area P11/29 Numerical method • Vortex lattice method : code TORNADO v126b [T. Melin; KTH] • Drag evaluation Parasite Drag = 1.5 of equivalent flat plate skin friction drag (Blasius Eq. + Thwaites formula) + Induced drag (TORNADO) • Various models : – aspect ratio – taper ratio – sweep angle Department of Aerodynamics SUPAERO P12/29 Results The variation of Lift to Drag ratio Triplane 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 0.8 1 0.6 9 8 7 L/D 6 5 Monoplane 4 3 Biplane 2 1 0 0 1 2 AR 3 4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 1 0.6 0.8 0.6 5 • L/D at cruise cond. increases with AR • greater L/D for biplanes • L/D of Triplane AR4 is smaller than biplane because of high parasite drag. 40 35 S 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 1 0.6 0.8 0.6 An approximate stall angle curve 30 25 AoA 10 The variation of Cruising angle of attack 20 15 10 5 0 0 1 2 AR 3 4 1 0.6 1 0.6 1 0.6 1 0.6 1 0.6 0.8 1 0.6 5 • Poor manoeuvrability of monoplane wings with AR 2 and higher • Biplane AR2-3 is suitable for flight Department of Aerodynamics SUPAERO P13/29 Biplane vs. monoplane 250 200 Mass 150 60 grams Monoplane 100 80 Biplane Biplane 50 Monoplane 0 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 -50 Drag Department of Aerodynamics SUPAERO P14/29 Contents • • • • • Introduction Part 1 Optimization - (Experimental) - (Numerical) Part 2 Biplane Combinations Part 3 Propeller Influence Conclusions Department of Aerodynamics SUPAERO P15/29 Other planforms Zimmerman 100 80 60 Planform Area (m2) CL (max) CD (min) L/D (max) Zim1 0.0264 1.251 0.0533 4.03 Zim2 0.0173 0.586 0.0419 5.21 Zim1Inv 0.0264 0.986 0.0538 3.75 Zim2Inv 0.0173 0.605 0.0344 4.96 Plaster1 0.0245 0.909 0.0411 4.92 Plaster2 0.0166 0.605 0.0354 5.47 Drenalyne1 0.0273 1.260 0.0528 4.46 Drenalyne2 0.0173 0.585 0.0375 4.81 40 20 0 0 20 40 60 80 100 120 140 160 180 200 -20 -40 -60 -80 -100 Plaster 100 80 60 40 20 0 0 20 40 60 80 100 120 140 -20 -40 -60 -80 -100 Drenalyne 85 65 45 25 5 0 20 40 60 80 100 120 140 160 180 200 -15 -35 -55 -75 -95 Department of Aerodynamics SUPAERO P16/29 Calculation Inverse Zimmerman Torres et al., Univ. Florida, 1999 Biplane type L/D cruise L/D max. CLmax/CLcruise Cm0 BSWE1 BSWE2 BSWE3 BPLA1 BPLA2 BPLA3 BZIM1 BZIM2 BZIM3 5.16 5.6 5.01 7.03 7.89 6.67 6.85 7.66 6.28 5.16 5.83 5.07 7.19 8.63 6.76 7.07 7.95 6.44 1.71 1.64 1.54 2.04 2.02 1.79 2.32 2.06 1.87 -0.0371 -0.0260 -0.0042 0.0418 0.0198 -0.0107 0.0603 -0.0347 -0.0165 Plaster wing Reyes et al., SUPAERO, 2001 Department of Aerodynamics SUPAERO P17/29 Scale 1 Scale 3 (SUPAERO) (S4, ENSICA) End-plates Parameters • Gap • Stagger • Decalage angle Decalage angle Stagger Gap U Lower Wing Department of Aerodynamics SUPAERO Side View P18/29 Department of Aerodynamics SUPAERO Gap Influent of Gap (Bi-Zim) Lift to drag ratio for stagger constant (S0) L/D 1.2 CL 1 6 0.8 4 0.6 2 0 0.4 CL Gap3 0.2 -20 CL Gap5 0 -0.2 0 10 -10 -2 0 10 -4 CL Gap7 -10 8 20 30 30 40 Finesse G0.75 S0 -6 Finesse G1.0 S0 -8 Finesse G1.25 S0 -10 -0.4 20 AoA Finesse M ono wo winglet AoA Pitching moment coefficient curve for stagger constant (S0) • Reduced an influence between both wings Cm 1 CM aT1 G0.75 S0 • Increase lift slope and maximum lift CM aT1 G1.0 S0 0.5 CM aT1 G1.25 S0 CM aT1 M ono wo winglet 0 -20 -10 0 10 -0.5 -1 AoA -1.5 20 30 40 • Not change position of aerodynamics center • Increase drag from the structure L/D not change P19/29 Stagger Influent of Stagger and tandem Influent of Stagger and tandem (Bi-Zim Gap5) (Bi-Zim Gap5) 1.6 L/D 8 1.4 6 1.2 CL 1 4 0.8 Cz Cz CL CL CL CL 0.6 0.4 0.2 Tandem2 Tandem1 S2 S4 S6 Gap5 S0 0 -10 -0.2 0 10 20 30 AoA Cm The effect of stagger to pitching moment 1.5 CMaT1 CMaT1 CMaT1 CMaT1 1 10 -0.5 0 -2 10 20 L/D Tandem2 L/D Tandem1 L/D S2 L/D S4 L/D S6 L/D Gap5 S0 30 • Aerodynamics center is between two wing 0 0 -10 • Increase lift slope and maximum lift G0.75 S+30 GO.75 S+15 G0.75 S0 G0.75 S-15 0.5 -10 AoA 0 -4 -0.4 -20 2 20 30 • No stagger has more L/D • Local AoA of fore-wing is bigger -1 AoA -1.5 Department of Aerodynamics SUPAERO P20/29 Decalage Angle Done with positive stagger model Decalage angle influence Decalage angle influence 8 L/D CL 1.2 1 6 0.8 4 0.6 0.4 CL D+9 CL D+3 CL D-3 CL D-7 0.2 2 CL D+7 CL D+0 CL D-5 AoA 0 0 -15 -5 -15 5 15 25 -0.2 -5 5 -2 AoA -0.4 15 L/D D+9 L/D D+3 L/D D-3 L/D D-7 25 L/D D+7 L/D D+0 L/D D-5 -4 • Strongly effect to stall angle and L/D • Negative decalage give highest wing performance Department of Aerodynamics SUPAERO P21/29 Visualisation S4, ENSICA Department of Aerodynamics SUPAERO P22/29 Contents • • • • • Introduction Part 1 Optimization - (Experimental) - (Numerical) Part 2 Biplane Combinations Part 3 Propeller Influence Conclusions Department of Aerodynamics SUPAERO P23/29 Propeller Effect (S4) Inf luent of motor to lif t coef f icient Upper Wing Motor CL 1.8 U Front View 1.6 1.4 Lower Wing Lower wing not stalled Upper wing Lift increases stalls 1.2 Center line 1 Side View 4 Lower Wing • 7 motor positions Lower wing stall at 22° 0.8 Upper wing 5 6 7 3 2 1 0.6 CL no motor 0.4 CL motor 0.2 were observed. 0 Half Span 10 Tube Test section 15 20 AoA 25 30 • At pre-stall regime, lift is increased due to propeller. Test section • The stall angle is delayed, lower wing is still not stall at AoA 22° Motor & propeller Power supply Department of Aerodynamics SUPAERO Moveable system • Lift, maximum lift and L/D are increased. P24/29 Propeller Effect (Scale 1) • Zim2 wing planform scale 1 (20cm. Max dim.) Monoplane Wing • Motor in front of wing gives highest performance. • The motor countering / encountering wingtip vortex effects are very small. P25/29 Propeller Effect 7 Effect of induced flow to model 6 Motor sting • Motor on upper and lower wing have the same effect 5 L/D 4 3 2 1 -10 -5 Model struts 0 0 -1 B = mid position G = lower wing R = upper wing 5 10 15 20 • Middle position is poorest 25 Incidence -2 Attach Motor to the model Moter's influent CL 1.6 1.4 1.2 1 0.8 Cz bz1 Cz bz2m 0.6 Cx bz2mh1 0.4 Cx bz3m Cx bz3mh1 0.2 0 -10 0 10 20 -0.2 AoA -0.4 30 • Attached on upper and lower wing • Same efficiency • Delay stall phenomena, increase maximum lift P26/29 Contents • • • • • Introduction Part 1 Optimization - (Experimental) - (Numerical) Part 2 Biplane Combinations Part 3 Propeller Influence Conclusions Department of Aerodynamics SUPAERO P27/29 Department of Aerodynamics SUPAERO Conclusions • Biplane is better than monoplane for this design criteria • Wind tunnel measurements and numerical calculations confirm the interest for biplane MAV wings. • AR 2.5 to 3 are appropriate for biplane MAV concepts. On-going developments • More accuracy measurement • Further optimization of motor position (wingtip) • Optimizing biplane-connecting structure • Pototype of Biplane MAV P28/29 Thank you for your attention P29/29 Drag Reduction of MAV by Biplane Effect Chinnapat THIPYOPAS Graduate student, Department of Aerodynamics and Jean-Marc MOSCHETTA Associate Professor of Aerodynamics, Department of Aerodynamics Ecole Nationale Supérieure de l’Aéronautique et de l’Espace (SUPAERO) 10 Av. Ed. Belin, Toulouse, France Department of Aerodynamics SUPAERO Parasite and Induced Drag Drag of drag biplane and monoplane 160 140 120 100 80 60 40 20 0 0 20 40 55 60 80 100 % Do Do (monoplane) Do (biplane) Di (monoplane) Di (biplane) Dt (monoplane) Dt (biplane) The zone which biplane has total drag less than monoplane configuration (when Induced drag > 45% total drag) Parasite and Induced Drag Airplane drag = Parasite Drag + Induced Drag Parasite drag is a function of Skin-Friction which depends on Wing Chord Induced Drag is very strongly effected by Aspect Ratio The zone which biplane has total drag less than monoplane configuration (when Induced drag > 45% total drag) case a.) AR1 b.) AR2 Surface S S/2 S/2 Lift for each wing W W W/2 Max. Lift L L/2 L/2 Lift coef. CL 2CL CL Skin friction drag Df Df/1.414 Df/1.414 Induced drag coef. CDi 2CDi CDi/2 Induced drag Total drag Di Di 1.5Df + Di 1.5Df /1.414 + Di c.) 2 x AR2 total Di/4 L 1.414Df Drag of drag biplane and monoplane 160 140 120 100 80 60 40 20 0 0 Di/2 1.5*1.414Df + Di/2 20 40 55 60 80 100 % Do Do (monoplane) Do (biplane) Di (monoplane) Di (biplane) Dt (monoplane) Dt (biplane) Results 8.0 -20 4.0 Lift coefficient curve for stagger constant 2.0 (S0) AoA 0.0 2 -10 -2.0 0 10 20 30 40 CL L/D 6.0 1.5 L/D -4.0 o w inglet The effect of stagger toFinesse lift to Mono dragwratio 1 -6.0 Finesse V. 5 10 Finesse V. 15 -8.0 0.5 Finesse w inglet 8 -10.0 0 -20 -20 6 -10 -0.5 0 -1 CL • Reynolds number effect on L/D • Winglet can improve wing performance • Gap increases the lift slope and maximum lift • L/D increased by positive stagger • Stall angle and maximum lift changed by decalage angle • Parasite drag from the strut between two wing is very important Lift to drag ratio, influent of velocity and winglet 10.0 10 0 -1.5 1.5 -10 -2 0 1 -4 -10 -8 0 -10 30 40 CZa G0.75 S0 CZa G1.0 S0 CZa G1.25 S0 AoA CZa M ono wo winglet 10 20 Finesse Finesse Finesse Finesse -6 0.5 -20 20 4 coefficient Lift 2 2 30 G0.75 S+30 GO.75 S+15 G0.75 S0 G0.75 AoA S-15 AoA 0 10 20 -0.5 -1 -1.5 CZa S0 D-6° CZa G1.0 S0 CZa S0 D+6° 30 Propeller-induced lift Increasing in lift Why are these 16 models ? • The Taguchi method was used in the first experimental design table. But an interaction between each parameters is very strong. • To determine the optimizing model, some interpolation was formed to complete the experimental table. Gap effect Lift - drag coefficient curve for stagger constant (S0) Lift coefficient curve for stagger constant (S0) 1.5 1.5 1 1 0.5 0.5 0 0 -20 CL 2 CL 2 -10 -0.5 0 10 20 30 40 CZa G0.75 S0 -0.5 0 0.2 AoA CXa G1.0 S0 CZa M ono wo winglet Pitching moment coefficient curve for stagger constant (S0) CXa M ono wo winglet L/D Lift to drag ratio for stagger constant (S0) Cm 1 8 CM aT1 G0.75 S0 6 CM aT1 G1.0 S0 4 CM aT1 G1.25 S0 2 CM aT1 M ono wo winglet 0 0 0 10 -0.5 20 30 40 -20 -10 -2 0 10 -4 -1 -8 AoA -10 20 30 Finesse G0.75 S0 -6 -1.5 CXa G1.25 S0 CD -1.5 0.5 0.8 CXa G0.75 S0 -1 CZa G1.25 S0 -1.5 -10 0.6 CZa G1.0 S0 -1 -20 0.4 Finesse G1.0 S0 Finesse G1.25 S0 AoA Finesse M ono wo winglet 40 Stagger effect The effect of stagger to lift coefficient 2 The effect of stagger to drag coefficient CL 2 1.5 1.5 1 1 0.5 CL 0.5 0 -20 -10 0 10 -0.5 20 CZa CZa CZa CZa -1 -1.5 30 G0.75 S+30 GO.75 S+15 G0.75 S0 G0.75 S-15 0 0 0.2 -1 L/D Cm 8 6 4 2 0 0 0 10 -0.5 20 30 -20 -10 -2 0 10 -6 AoA -8 -10 20 30 Finesse G0.75 S+30 Finesse GO.75 S+15 Finesse G0.75 S0 Finesse G0.75 S-15 -4 -1 -1.5 G0.75 S+30 GO.75 S+15 G0.75 S0 G0.75 S-15 10 0.5 -10 0.8 The effect of stagger to lift to drag ratio CMaT1 G0.75 S+30 CMaT1 GO.75 S+15 CMaT1 G0.75 S0 CMaT1 G0.75 S-15 1 0.6 CXa CXa CXa CXa CD -1.5 AoA The effect of stagger to pitching moment 1.5 -20 0.4 -0.5 AoA Decalage effect Lift coefficient 2 Poar curve 1.5 1.5 1 1 0.5 0.5 AoA CD 0 -20 -10 CL CL 2 0 0 10 20 30 -0.5 0 0.2 CZa S0 D-6° CZa G1.0 S0 CZa S0 D+6° -1 0.8 1 CXa S0 D-6° CXa G1.0 S0 CXa S0 D+6° -1.5 Lift to drag ratio 8 Pitching moment coefficient Cm L/D 1.5 CMaT1 S0 D-6° CMaT1 G1.0 S0 CMaT1 S0 D+6° 1 6 4 0.5 2 AoA AoA 0 0 -10 0.6 -1 -1.5 -20 0.4 -0.5 0 10 20 30 -20 -10 -2 0 10 20 30 -0.5 -4 Finesse S0 D-6° -1 -6 -1.5 -8 Finesse G1.0 S0 Finesse S0 D+6° Scale 1 • Sweptm Plaster and Inv-Zim planeform • Connected with strut • Biplane – parameters • Gap • Stagger • Decalage angle Swept Planform Influent of stagger Influent of stagger 1.2 8 1 6 0.8 4 0.6 L/D CL Cz G5S0 0.4 Cz G5S2 2 Cz G5S4 0.2 0 Cz G5S6 -10 0 -10 -5 0 5 10 15 -5 0 5 -2 20 -0.2 10 15 L/D G5S0 L/D G5S2 L/D G5S4 L/D G5S6 20 -4 -0.4 AoA AoA Decalage angle influence Decalage angle influence 8 L/D CL 1.2 1 6 0.8 4 0.6 0.4 CL D+9 CL D+3 CL D-3 CL D-7 0.2 2 CL D+7 CL D+0 CL D-5 AoA 0 0 -15 -5 -15 5 15 -0.2 25 -5 5 -2 AoA -0.4 -4 15 L/D D+9 L/D D+3 L/D D-3 L/D D-7 25 L/D D+7 L/D D+0 L/D D-5 Inverse-Zimmerman Influent of Stagger and tandem Influent of Gap (Bi-Zim) (Bi-Zim Gap5) 1.6 1.2 1.4 1 1.2 0.8 CL 1 CL 0.6 0.8 0.4 0.2 0.4 CL Gap5 CL Gap7 0.2 0 -10 -0.2 0 10 20 Cz Cz CL CL CL CL 0.6 CL Gap3 Tandem2 Tandem1 S2 S4 S6 Gap5 S0 0 30 -10 -0.2 0 10 20 30 AoA -0.4 -0.4 AoA Influent of Stagger and tandem (Bi-Zim Gap5) Influent of Stagger and tandem (BiZim Gap5) 8 CL L/D 1.6 1.4 6 1.2 4 1 Cz Tandem2 0.8 Cz Tandem1 2 0.6 Cx S2 AoA 0.4 0 -10 0 -2 -4 10 20 L/D Tandem2 L/D Tandem1 L/D S2 L/D S4 L/D S6 L/D Gap5 S0 30 CL S4 CL S6 0.2 CL Gap5 S0 0 0 -0.2 -0.4 0.2 0.4 0.6 CD 0.8 Visualisation Smoke generation Tuft method Motor-Propeller Effect • Attached on upper and lower wing • Same efficiency • Delay stall phenomena, increase maximum lift Motor's influent Moter's influent 1.6 1.4 1.4 1.2 1.2 1 1 CL CL 1.6 0.8 0.6 Cz bz1 0.8 Cz bz2m 0.6 Cz bz1 Cz bz2m Cx bz2mh1 Cx bz2mh1 0.4 0.2 Cx bz3m 0.4 Cx bz3mh1 0.2 0 -10 Cx bz3mh1 0 0 10 20 -0.2 30 0 0.1 0.2 0.3 0.4 -0.2 CD AoA -0.4 Cx bz3m -0.4 0.5 0.6 0.7 0.8 GEOBAT