Drag Reduction of MAV by Biplane Effect Chinnapat THIPYOPAS Graduate student, Department of Aerodynamics and Jean-Marc MOSCHETTA Associate Professor of Aerodynamics, Department of Aerodynamics Ecole Nationale Supérieure de.

Download Report

Transcript Drag Reduction of MAV by Biplane Effect Chinnapat THIPYOPAS Graduate student, Department of Aerodynamics and Jean-Marc MOSCHETTA Associate Professor of Aerodynamics, Department of Aerodynamics Ecole Nationale Supérieure de.

Drag Reduction of MAV
by Biplane Effect
Chinnapat THIPYOPAS
Graduate student, Department of Aerodynamics
and
Jean-Marc MOSCHETTA
Associate Professor of Aerodynamics, Department of
Aerodynamics
Ecole Nationale Supérieure de l’Aéronautique et de l’Espace (SUPAERO)
10 Av. Ed. Belin, Toulouse, France
P1/29
Contents
•
•
•
•
•
Introduction
Part 1 Optimization - (Experimental)
- (Numerical)
Part 2 Biplane Combinations
Part 3 Propeller Influence
Conclusions
Department of Aerodynamics SUPAERO
P2/29
Contents
•
•
•
•
•
Introduction
Part 1 Optimization - (Experimental)
- (Numerical)
Part 2 Biplane Combinations
Part 3 Propeller Influence
Conclusions
Department of Aerodynamics SUPAERO
P3/29
Monoplane MAV concepts
Minus-Kiool
57g - 20.6 cm
Plaster
64g - 23 cm
Department of Aerodynamics SUPAERO
P4/29
Department of Aerodynamics SUPAERO
Monoplane-MAVs
Plaster,
SUPAERO
Maxi-Kiool,
SUPAERO
Induced Drag 76%*
Drenalyne,
SUPAERO
Total Drag = Parasite Drag + Induced drag
100 %
* J.L’HENAFF, SUPAERO 2004
20-30 %
Biplane
Concept !!
70-80 %
P5/29
Department of Aerodynamics SUPAERO
Monoplane vs. biplane
wing drag = Parasite Drag + Induced Drag
Parasite drag is a function of Skin-Friction which depends on Wing Chord
Induced Drag is very strongly effected by Aspect Ratio
Constant lift, speed & overall dimension
 1
DF
Di
Pmax
2
DF / 2
Di
 Pmax
2
DF  2
Di / 2
Pmax
P6/29
Contents
•
•
•
•
•
Introduction
Part 1 Optimization - (Experimental)
- (Numerical)
Part 2 Biplane Combinations
Part 3 Propeller Influence
Conclusions
Department of Aerodynamics SUPAERO
P7/29
Optimization process
Design Constraints
• Maximum overall dimension : 20 cm
• Lift at 10 m/s = Weight = 80 grams
• Manoeuvrability : (C )
L cruise
(CL ) max
2
20 grams min.
for payload
Cost function
• Minimum Drag at cruise condition
Department of Aerodynamics SUPAERO
P8/29
Experimental setup
• Wind tunnel
– Test Section 45cm x 45cm
– Velocity 10 m/s
• Measurement
– 3-component balance
• Models
– 16 flat-plate wing models
• Aspect ratio 1 – 4
• Taper ratio 0.2 – 1.0
• Sweep angle 0 - 50°
AR1, Taper 1, No Swept
• Reference surface/length
– For comparison, every model
is referenced by same area,
length
Department of Aerodynamics SUPAERO
Strut
20cm.
AR2.5, Taper0.6, Swept25°
P9/29
Model’s Drag Correction
Strut
Model
Model is not attached to strut
Strut
Dragmod el  Dragtotal  Dragstrut
Department of Aerodynamics SUPAERO
P10/29
Department of Aerodynamics SUPAERO
Results
No.
Model Name
Area
*
CL
*
C D min C D min C L max
*
K
Monoplane
AC
(cm.)
CD
L/D
Biplane
AoA
CD
L/D
AoA
0
Disc
314.2
2.8223
0.0232
0.0147
1.997
0.3578
8.32
0.127
5.052
8.56
0.055
5.871
4.6
1
A1S0T0.2
144.0
2.1647
0.0146
0.0202
0.887
0.5127
6.176
0.293
2.209
23
0.085
3.803
12.3
2
A1S0T1
200.0
2.5556
0.0219
0.0214
1.449
0.3888
5.336
0.189
3.399
14.6
0.073
4.39
8.56
3
A1S25T0.6
224.8
2.4667
0.0112
0.01
1.621
0.3857
8.926
0.164
3.953
13.5
0.058
5.532
7.56
4
A1S50T0.2
144.0
2.4114
0.0163
0.0224
1.046
0.4178
9.967
0.256
2.530
21
0.078
4.128
11.3
5
A1S50T1
130.2
2.4902
0.0183
0.0281
0.944
0.3738
7.633
0.252
2.552
21.8
0.081
3.967
12.2
6
A2,5S0T0.6
146.7
3.7786
0.02
0.0273
0.627
0.2814
3.099
-
-
-
0.055
6.036
6.38
7
A2,5S0T1
137.9
3.556
0.0112
0.0162
0.572
0.2966
2.43
-
-
-
0.054
5.899
7.44
8
A2,5S25T0.6
146.7
3.6615
0.0172
0.0234
0.619
0.3032
4.904
-
-
-
0.052
6.288
6.38
9
A2,5S25T1
137.9
4.0961
0.02
0.029
0.601
0.2683
4.503
-
-
-
0.061
5.227
6.5
10
A2,5S50T1
102.9
3.0513
0.0067
0.0131
0.535
0.319
5.766
-
-
-
0.071
4.552
11.5
11
A4S0T0.2
99.3
4.3273
0.0166
0.0326
0.355
0.2413
2.453
-
-
-
0.060
5.404
8.46
12
A4S0T1
94.1
4.5539
0.0167
0.0345
0.381
0.2455
1.497
-
-
-
0.074
4.386
9.83
13
A4S25T0.6
96.6
4.9468
0.0133
0.0275
0.418
0.2363
3.261
-
-
-
0.058
5.613
7.6
14
A4S50T0.2
84.1
3.3926
0.0124
0.0295
0.481
0.2943
5.221
-
-
-
0.092
3.499
14.3
15
A4S50T0.6
79.5
3.4883
0.0095
0.0239
0.442
0.3056
5.95
-
-
-
0.091
3.533
14.9
16
A4S50T1
76.7
3.5983
0.0141
0.0368
0.424
0.2781
5.311
-
-
-
0.091
3.508
15.1
Red color is a value referenced by wing’s area
P11/29
Numerical method
• Vortex lattice method : code
TORNADO v126b [T. Melin; KTH]
• Drag evaluation
Parasite Drag = 1.5 of equivalent
flat plate skin friction drag (Blasius
Eq. + Thwaites formula)
+
Induced drag (TORNADO)
• Various models :
– aspect ratio
– taper ratio
– sweep angle
Department of Aerodynamics SUPAERO
P12/29
Results
The variation of Lift to Drag ratio
Triplane
1
0.6
1
0.6
1
0.6
1
0.6
1
0.6
0.8
1
0.6
9
8
7
L/D
6
5
Monoplane
4
3
Biplane
2
1
0
0
1
2
AR
3
4
0.8
0.4
0.8
0.4
0.8
0.4
0.8
0.4
0.8
1
0.6
0.8
0.6
5
• L/D at cruise cond. increases with AR
• greater L/D for biplanes
• L/D of Triplane AR4 is smaller than
biplane because of high parasite drag.
40
35
S
0.8
0.4
0.8
0.4
0.8
0.4
0.8
0.4
0.8
1
0.6
0.8
0.6
An approximate
stall angle curve
30
25
AoA
10
The variation of Cruising angle of attack
20
15
10
5
0
0
1
2
AR
3
4
1
0.6
1
0.6
1
0.6
1
0.6
1
0.6
0.8
1
0.6
5
• Poor manoeuvrability of monoplane
wings with AR 2 and higher
• Biplane AR2-3 is suitable for flight
Department of Aerodynamics SUPAERO
P13/29
Biplane vs. monoplane
250
200
Mass
150
60 grams
Monoplane
100
80
Biplane
Biplane
50
Monoplane
0
0
0,05
0,1
0,15
0,2
0,25
0,3
0,35
0,4
-50
Drag
Department of Aerodynamics SUPAERO
P14/29
Contents
•
•
•
•
•
Introduction
Part 1 Optimization - (Experimental)
- (Numerical)
Part 2 Biplane Combinations
Part 3 Propeller Influence
Conclusions
Department of Aerodynamics SUPAERO
P15/29
Other planforms
Zimmerman
100
80
60
Planform
Area (m2)
CL (max)
CD (min)
L/D (max)
Zim1
0.0264
1.251
0.0533
4.03
Zim2
0.0173
0.586
0.0419
5.21
Zim1Inv
0.0264
0.986
0.0538
3.75
Zim2Inv
0.0173
0.605
0.0344
4.96
Plaster1
0.0245
0.909
0.0411
4.92
Plaster2
0.0166
0.605
0.0354
5.47
Drenalyne1
0.0273
1.260
0.0528
4.46
Drenalyne2
0.0173
0.585
0.0375
4.81
40
20
0
0
20
40
60
80
100
120
140
160
180
200
-20
-40
-60
-80
-100
Plaster
100
80
60
40
20
0
0
20
40
60
80
100
120
140
-20
-40
-60
-80
-100
Drenalyne
85
65
45
25
5
0
20
40
60
80
100
120
140
160
180
200
-15
-35
-55
-75
-95
Department of Aerodynamics SUPAERO
P16/29
Calculation
Inverse Zimmerman
Torres et al., Univ. Florida, 1999
Biplane type
L/D cruise
L/D max.
CLmax/CLcruise
Cm0
BSWE1
BSWE2
BSWE3
BPLA1
BPLA2
BPLA3
BZIM1
BZIM2
BZIM3
5.16
5.6
5.01
7.03
7.89
6.67
6.85
7.66
6.28
5.16
5.83
5.07
7.19
8.63
6.76
7.07
7.95
6.44
1.71
1.64
1.54
2.04
2.02
1.79
2.32
2.06
1.87
-0.0371
-0.0260
-0.0042
0.0418
0.0198
-0.0107
0.0603
-0.0347
-0.0165
Plaster wing
Reyes et al., SUPAERO, 2001
Department of Aerodynamics SUPAERO
P17/29
Scale 1
Scale 3
(SUPAERO)
(S4, ENSICA)
End-plates
Parameters
• Gap
• Stagger
• Decalage angle
Decalage
angle
Stagger
Gap
U
Lower Wing
Department of Aerodynamics SUPAERO
Side View
P18/29
Department of Aerodynamics SUPAERO
Gap
Influent of Gap (Bi-Zim)
Lift to drag ratio for stagger constant (S0)
L/D
1.2
CL
1
6
0.8
4
0.6
2
0
0.4
CL Gap3
0.2
-20
CL Gap5
0
-0.2
0
10
-10
-2 0
10
-4
CL Gap7
-10
8
20
30
30
40
Finesse G0.75 S0
-6
Finesse G1.0 S0
-8
Finesse G1.25 S0
-10
-0.4
20
AoA
Finesse M ono wo winglet
AoA
Pitching moment coefficient curve for
stagger constant (S0)
• Reduced an influence between both
wings
Cm
1
CM aT1 G0.75 S0
• Increase lift slope and maximum lift
CM aT1 G1.0 S0
0.5
CM aT1 G1.25 S0
CM aT1 M ono wo winglet
0
-20
-10
0
10
-0.5
-1
AoA
-1.5
20
30
40
• Not change position of aerodynamics
center
• Increase drag from the structure 
L/D not change
P19/29
Stagger
Influent of Stagger and tandem
Influent of Stagger and tandem (Bi-Zim
Gap5)
(Bi-Zim Gap5)
1.6
L/D
8
1.4
6
1.2
CL
1
4
0.8
Cz
Cz
CL
CL
CL
CL
0.6
0.4
0.2
Tandem2
Tandem1
S2
S4
S6
Gap5 S0
0
-10
-0.2
0
10
20
30
AoA
Cm
The effect of stagger to pitching
moment
1.5
CMaT1
CMaT1
CMaT1
CMaT1
1
10
-0.5
0
-2
10
20
L/D Tandem2
L/D Tandem1
L/D S2
L/D S4
L/D S6
L/D Gap5 S0
30
• Aerodynamics center is between two
wing
0
0
-10
• Increase lift slope and maximum lift
G0.75 S+30
GO.75 S+15
G0.75 S0
G0.75 S-15
0.5
-10
AoA
0
-4
-0.4
-20
2
20
30
• No stagger has more L/D
• Local AoA of fore-wing is bigger
-1
AoA
-1.5
Department of Aerodynamics SUPAERO
P20/29
Decalage Angle
Done with positive stagger model
Decalage angle influence
Decalage angle influence
8
L/D
CL
1.2
1
6
0.8
4
0.6
0.4
CL D+9
CL D+3
CL D-3
CL D-7
0.2
2
CL D+7
CL D+0
CL D-5
AoA
0
0
-15
-5
-15
5
15
25
-0.2
-5
5
-2
AoA
-0.4
15
L/D D+9
L/D D+3
L/D D-3
L/D D-7
25
L/D D+7
L/D D+0
L/D D-5
-4
• Strongly effect to stall angle and L/D
• Negative decalage give highest wing performance
Department of Aerodynamics SUPAERO
P21/29
Visualisation
S4, ENSICA
Department of Aerodynamics SUPAERO
P22/29
Contents
•
•
•
•
•
Introduction
Part 1 Optimization - (Experimental)
- (Numerical)
Part 2 Biplane Combinations
Part 3 Propeller Influence
Conclusions
Department of Aerodynamics SUPAERO
P23/29
Propeller Effect (S4)
Inf luent of motor to lif t coef f icient
Upper Wing
Motor
CL
1.8
U
Front View
1.6
1.4
Lower Wing
Lower wing not stalled
Upper wing
Lift increases
stalls
1.2
Center line
1
Side View
4
Lower Wing
• 7 motor positions
Lower wing stall at 22°
0.8
Upper wing
5
6
7
3
2
1
0.6
CL no motor
0.4
CL motor
0.2
were observed.
0
Half Span
10
Tube
Test section
15
20
AoA
25
30
• At pre-stall regime, lift is
increased due to propeller.
Test section
• The stall angle is delayed, lower
wing is still not stall at AoA 22°
Motor & propeller
Power supply
Department of Aerodynamics SUPAERO
Moveable
system
• Lift, maximum lift and L/D are
increased.
P24/29
Propeller Effect (Scale 1)
• Zim2 wing planform scale 1
(20cm. Max dim.)
Monoplane Wing
• Motor in front of wing gives highest performance.
• The motor countering / encountering wingtip vortex effects are very
small.
P25/29
Propeller Effect
7
Effect of induced flow to model
6
Motor sting
• Motor on upper and
lower wing have the
same effect
5
L/D
4
3
2
1
-10
-5
Model struts
0
0
-1
B = mid position
G = lower wing
R = upper wing
5
10
15
20
• Middle position is
poorest
25
Incidence
-2
Attach Motor to the model
Moter's influent
CL
1.6
1.4
1.2
1
0.8
Cz bz1
Cz bz2m
0.6
Cx bz2mh1
0.4
Cx bz3m
Cx bz3mh1
0.2
0
-10
0
10
20
-0.2
AoA
-0.4
30
• Attached on upper
and lower wing
• Same efficiency
• Delay stall
phenomena,
increase maximum
lift
P26/29
Contents
•
•
•
•
•
Introduction
Part 1 Optimization - (Experimental)
- (Numerical)
Part 2 Biplane Combinations
Part 3 Propeller Influence
Conclusions
Department of Aerodynamics SUPAERO
P27/29
Department of Aerodynamics SUPAERO
Conclusions
• Biplane is better than monoplane for this design criteria
• Wind tunnel measurements and numerical calculations
confirm the interest for biplane MAV wings.
• AR 2.5 to 3 are appropriate for biplane MAV concepts.
On-going developments
• More accuracy measurement
• Further optimization of motor position (wingtip)
• Optimizing biplane-connecting structure
• Pototype of Biplane MAV
P28/29
Thank you for your attention
P29/29
Drag Reduction of MAV
by Biplane Effect
Chinnapat THIPYOPAS
Graduate student, Department of Aerodynamics
and
Jean-Marc MOSCHETTA
Associate Professor of Aerodynamics, Department of
Aerodynamics
Ecole Nationale Supérieure de l’Aéronautique et de l’Espace (SUPAERO)
10 Av. Ed. Belin, Toulouse, France
Department of Aerodynamics SUPAERO
Parasite and Induced Drag
Drag of drag biplane and monoplane
160
140
120
100
80
60
40
20
0
0
20
40
55
60
80
100
% Do
Do (monoplane)
Do (biplane)
Di (monoplane)
Di (biplane)
Dt (monoplane)
Dt (biplane)
The zone which biplane has total drag less than monoplane configuration
(when Induced drag > 45% total drag)
Parasite and Induced Drag
Airplane drag = Parasite Drag + Induced Drag
Parasite drag is a function of Skin-Friction which depends on Wing Chord
Induced Drag is very strongly effected by Aspect Ratio
The zone which biplane has total drag
less than monoplane configuration
(when Induced drag > 45% total drag)
case
a.)
AR1
b.)
AR2
Surface
S
S/2
S/2
Lift for each wing
W
W
W/2
Max. Lift
L
L/2
L/2
Lift coef.
CL
2CL
CL
Skin friction drag
Df
Df/1.414
Df/1.414
Induced drag coef.
CDi
2CDi
CDi/2
Induced drag
Total drag
Di
Di
1.5Df + Di
1.5Df /1.414 + Di
c.) 2 x AR2
total
Di/4
L
1.414Df
Drag of drag biplane and monoplane
160
140
120
100
80
60
40
20
0
0
Di/2
1.5*1.414Df + Di/2
20
40
55
60
80
100
% Do
Do (monoplane)
Do (biplane)
Di (monoplane)
Di (biplane)
Dt (monoplane)
Dt (biplane)
Results
8.0
-20
4.0
Lift coefficient curve for stagger constant
2.0
(S0)
AoA
0.0
2
-10 -2.0 0
10
20
30
40
CL
L/D
6.0
1.5
L/D
-4.0
o w inglet
The effect of stagger toFinesse
lift to Mono
dragwratio
1
-6.0
Finesse V. 5
10
Finesse V. 15
-8.0
0.5
Finesse w inglet
8
-10.0
0
-20
-20
6
-10 -0.5 0
-1
CL
• Reynolds number effect on
L/D
• Winglet can improve wing
performance
• Gap increases the lift slope
and maximum lift
• L/D increased by positive
stagger
• Stall angle and maximum lift
changed by decalage angle
• Parasite drag from the strut
between two wing is very
important
Lift to drag ratio, influent of velocity and
winglet
10.0
10
0
-1.5 1.5
-10
-2 0
1
-4
-10
-8
0
-10
30
40
CZa G0.75 S0
CZa G1.0 S0
CZa G1.25 S0
AoA
CZa M ono wo winglet
10
20
Finesse
Finesse
Finesse
Finesse
-6
0.5
-20
20
4 coefficient
Lift
2
2
30
G0.75 S+30
GO.75 S+15
G0.75 S0
G0.75 AoA
S-15
AoA
0
10
20
-0.5
-1
-1.5
CZa S0 D-6°
CZa G1.0 S0
CZa S0 D+6°
30
Propeller-induced lift
Increasing in lift
Why are these 16 models ?
• The Taguchi method was used in the first
experimental design table. But an
interaction between each parameters is
very strong.
• To determine the optimizing model, some
interpolation was formed to complete the
experimental table.
Gap effect
Lift - drag coefficient curve for stagger
constant (S0)
Lift coefficient curve for stagger constant
(S0)
1.5
1.5
1
1
0.5
0.5
0
0
-20
CL
2
CL
2
-10 -0.5 0
10
20
30
40
CZa G0.75 S0
-0.5
0
0.2
AoA
CXa G1.0 S0
CZa M ono wo winglet
Pitching moment coefficient curve for
stagger constant (S0)
CXa M ono wo winglet
L/D
Lift to drag ratio for stagger constant (S0)
Cm
1
8
CM aT1 G0.75 S0
6
CM aT1 G1.0 S0
4
CM aT1 G1.25 S0
2
CM aT1 M ono wo winglet
0
0
0
10
-0.5
20
30
40
-20
-10
-2 0
10
-4
-1
-8
AoA
-10
20
30
Finesse G0.75 S0
-6
-1.5
CXa G1.25 S0
CD
-1.5
0.5
0.8
CXa G0.75 S0
-1
CZa G1.25 S0
-1.5
-10
0.6
CZa G1.0 S0
-1
-20
0.4
Finesse G1.0 S0
Finesse G1.25 S0
AoA
Finesse M ono wo winglet
40
Stagger effect
The effect of stagger to lift coefficient
2
The effect of stagger to drag
coefficient
CL
2
1.5
1.5
1
1
0.5
CL
0.5
0
-20
-10
0
10
-0.5
20
CZa
CZa
CZa
CZa
-1
-1.5
30
G0.75 S+30
GO.75 S+15
G0.75 S0
G0.75 S-15
0
0
0.2
-1
L/D
Cm
8
6
4
2
0
0
0
10
-0.5
20
30
-20
-10
-2 0
10
-6
AoA
-8
-10
20
30
Finesse G0.75 S+30
Finesse GO.75 S+15
Finesse G0.75 S0
Finesse G0.75 S-15
-4
-1
-1.5
G0.75 S+30
GO.75 S+15
G0.75 S0
G0.75 S-15
10
0.5
-10
0.8
The effect of stagger to lift to drag ratio
CMaT1 G0.75 S+30
CMaT1 GO.75 S+15
CMaT1 G0.75 S0
CMaT1 G0.75 S-15
1
0.6
CXa
CXa
CXa
CXa
CD
-1.5
AoA
The effect of stagger to pitching
moment
1.5
-20
0.4
-0.5
AoA
Decalage effect
Lift coefficient
2
Poar curve
1.5
1.5
1
1
0.5
0.5
AoA
CD
0
-20
-10
CL
CL
2
0
0
10
20
30
-0.5
0
0.2
CZa S0 D-6°
CZa G1.0 S0
CZa S0 D+6°
-1
0.8
1
CXa S0 D-6°
CXa G1.0 S0
CXa S0 D+6°
-1.5
Lift to drag ratio
8
Pitching moment coefficient
Cm
L/D
1.5
CMaT1 S0 D-6°
CMaT1 G1.0 S0
CMaT1 S0 D+6°
1
6
4
0.5
2
AoA
AoA
0
0
-10
0.6
-1
-1.5
-20
0.4
-0.5
0
10
20
30
-20
-10
-2
0
10
20
30
-0.5
-4
Finesse S0 D-6°
-1
-6
-1.5
-8
Finesse G1.0 S0
Finesse S0 D+6°
Scale 1
• Sweptm Plaster and
Inv-Zim planeform
• Connected with strut
• Biplane
– parameters
• Gap
• Stagger
• Decalage angle
Swept Planform
Influent of stagger
Influent of stagger
1.2
8
1
6
0.8
4
0.6
L/D
CL
Cz G5S0
0.4
Cz G5S2
2
Cz G5S4
0.2
0
Cz G5S6
-10
0
-10
-5
0
5
10
15
-5
0
5
-2
20
-0.2
10
15
L/D G5S0
L/D G5S2
L/D G5S4
L/D G5S6
20
-4
-0.4
AoA
AoA
Decalage angle influence
Decalage angle influence
8
L/D
CL
1.2
1
6
0.8
4
0.6
0.4
CL D+9
CL D+3
CL D-3
CL D-7
0.2
2
CL D+7
CL D+0
CL D-5
AoA
0
0
-15
-5
-15
5
15
-0.2
25
-5
5
-2
AoA
-0.4
-4
15
L/D D+9
L/D D+3
L/D D-3
L/D D-7
25
L/D D+7
L/D D+0
L/D D-5
Inverse-Zimmerman
Influent of Stagger and tandem
Influent of Gap (Bi-Zim)
(Bi-Zim Gap5)
1.6
1.2
1.4
1
1.2
0.8
CL
1
CL
0.6
0.8
0.4
0.2
0.4
CL Gap5
CL Gap7
0.2
0
-10
-0.2
0
10
20
Cz
Cz
CL
CL
CL
CL
0.6
CL Gap3
Tandem2
Tandem1
S2
S4
S6
Gap5 S0
0
30
-10
-0.2
0
10
20
30
AoA
-0.4
-0.4
AoA
Influent of Stagger and tandem (Bi-Zim
Gap5)
Influent of Stagger and tandem (BiZim Gap5)
8
CL
L/D
1.6
1.4
6
1.2
4
1
Cz Tandem2
0.8
Cz Tandem1
2
0.6
Cx S2
AoA
0.4
0
-10
0
-2
-4
10
20
L/D Tandem2
L/D Tandem1
L/D S2
L/D S4
L/D S6
L/D Gap5 S0
30
CL S4
CL S6
0.2
CL Gap5 S0
0
0
-0.2
-0.4
0.2
0.4
0.6
CD
0.8
Visualisation
Smoke
generation
Tuft method
Motor-Propeller Effect
• Attached on upper and lower wing
• Same efficiency
• Delay stall phenomena, increase
maximum lift
Motor's influent
Moter's influent
1.6
1.4
1.4
1.2
1.2
1
1
CL
CL
1.6
0.8
0.6
Cz bz1
0.8
Cz bz2m
0.6
Cz bz1
Cz bz2m
Cx bz2mh1
Cx bz2mh1
0.4
0.2
Cx bz3m
0.4
Cx bz3mh1
0.2
0
-10
Cx bz3mh1
0
0
10
20
-0.2
30
0
0.1
0.2
0.3
0.4
-0.2
CD
AoA
-0.4
Cx bz3m
-0.4
0.5
0.6
0.7
0.8
GEOBAT