Integrative System Framework for Noninvasive Understanding of Myocardial Tissue Electrophysiology Linwei Wang, Ken C.L.

Download Report

Transcript Integrative System Framework for Noninvasive Understanding of Myocardial Tissue Electrophysiology Linwei Wang, Ken C.L.

Integrative System Framework for
Noninvasive Understanding of
Myocardial Tissue Electrophysiology
Linwei Wang, Ken C.L. Wong, Pengcheng Shi
Computational System Biomedicine Laboratory
B. Thomas Golisano College of Computing and Information Sciences
Rochester Institute of Technology
CPP, INI, Cambridge, July 2009
From patient observations to personalized
electrophysiology
• Noninvasive observations on specific patient:
– Structural: tomographic image
– Functional: projective ECG/BSPM
• In clinical settings, it really has been a sophisticated
pattern recognition process to decipher the information.
• How can models offer help?
– Better models lead to more appropriate constraints in data
analysis.
• Physiological plausibility vs. algorithmic/computational feasibility
• Volumetric?
– Ultimately, models have to be personalized to be truly
meaningful.
Integrative system perspective
Prior Knowledge:
Models
• Built up over many
years
• General population
System Modeling
Patient Observations
Individual
Subject
Personalized
Information
Recovery
• Electrical function
• System dynamics
• Tissue property
• System
• Latent
substrate
observations
Wang
et al. IEEE-TBME, 2009
(in press).
• Subject-specific
information
• Noisy, sparse,
incomplete
Data Acquisition
• BSP sequence
• Tomographic
images
Physiological model constrained statistical
framework
• System perspective
to recover
personalized cardiac
electrophysiology
– (phenomenal) Model
constrained data
analysis: prior
knowledge guides a
physiologicallymeaningful
understanding of
personal data
– Data driven model
personalization:
patient data helps to
Information
Recovery
System
Modeling
Data
Acquisition
Volumetric myocardial representation
• Ventricular wall: point cloud
Slice
segmentation
Surface
mesh
Volume
representation
• Fiber structure: mapped from Auckland model
Surface
registration
Surface fiber
structure
3D fiber structure
Surface body torso representation
• (Isotropic and homogeneous volume conductor)
Patient’s
images
Surface model
Cardiac electrophysiological system
Volumetric TMP
dynamics
model
Personalized 3DBEM mixed hearttorso model
TMP-to-BSP
mapping
System dynamics: volumetric TMP activity
• Diffusion-reaction system: 2-variable ordinary differential
equation
•uMeshfree representation
U and 1computation
t    (Du)  f1(u,v)

v

 f 2 (u,v)

t

t  M KU  f1 (U,V)

V

 f 2 (U,V)

t
- u: excitation variable:
TMP
- v: recovery variable:
current
- D: diffusion tensor
System observation: TMP-to-BSP mapping
• Quasi-static electromagnetism
Poisson’s equation
• Mixed meshfree and boundary element methods
Governing
equation

Direct solution
method
Meshfree+BEM

 2 (r)    (D(r)u(r))
c( ) ( ) 

1
4
(
t

t
Surface integral:
BEM
 (r)q* ( ,r)dt 
Di (r) u(r)
r dt 
|   r | n
 HU


t
t
 (r) *
r  ( ,r)dt
n

1
 (Di (r)u(r))dt )
|  r |
Volume integral:
meshfree
State space system representation
U
1
t  M KU  f1(U,V,)

V

 f 2 (U,V,)
X  UT

t
TMP
activity:
Y 
TMP-to
BSP
mapping:

T
Uncertainty:,


Nonlinear dynamic model





 HU
VT 
Local linearization
Temporal discretization
State
Xk  Fd (Xk1, k1 )   k
equation:
Parameter: k  k1   k

Measurement Y  HX  
k
k
k
equation:

Prediction
Correction
Large-scale & high-dimensional system

U,V is of dimension 2000-3000

Monte
Carlo
integration
Sequential data assimilation
• Combination of unscented transform (UT) and Kalman filter:
unscented Kalman filter
Prediction: UT
(MC integration + deterministic sampling)
Preserve intact model
nonlinearity
Black-box discretization
Correction: KF update
Computational feasibility
TMP estimator: reconstructing TMP from
BSP
Initialization
Uˆ
0
Pˆ u0

k = k+1
Ensemble generation
(unscented transform)


n
n
ˆ
ˆ
ˆ
 k1,i 0  Uk1 Uk1  (  )Pu 
2

k1


Correction (KF update)
Prediction (MC
integration)
( k|k1,i , k|k1,i )  F˜d ( k1,i,Vk1)

ˆ  U   K u (Y  HU  )
U
k
k
k
k
k
Pˆ uk  (I  K uk H)Puk
Uk   W im k|k1,i ,Vk   W im k|k1,i
n
n
i 0
n
c
i 0



Filter Gain

K uk  Puk HT (HPuk HT  Rvk )1

i 0
P   W i ( k|k1,i  U )( k|k1,i  Uk )T  Q u

uk

k
k
Parameter estimator: reconstructing model
parameters
Initialization
ˆ
0
Pˆ 0

Ensemble generation
(unscented transform)
k1,i0
2n

ˆ
ˆ  (n  )Pˆ
 

k1
k1
 k1
k = k+1
Prediction (MC integration)
ˆ , )   H
˜ 
   F˜d (U
k|k1,i
k1 k1,i


Correction(KF update)
ˆ  
ˆ  K  (Y  Y )

k
k1
k
k
k
Pˆ k  P k  K k Pyk K T
k

k|k1,i
k|k1,i
ˆ Q
Pk  P
 k1
 k
Yk   W im k|k1,i
2n


 k yk
Filter Gain
i 0

P   W i (
 Y )(k|k1,i
 Yk )T  R k
i 0


2n
ˆ )(  Y )T
P
  W c (  
2n

yk
c
i 0

k|k1,i
i

k
k1,i
k1
k|k1,i
k


Kk  Pk yk Pyk
1
Nonlinear
measurement model
Experiments (PhysioNet.org):
electrocardiographic imaging of myocardial
infarction
• Four post-MI patients

personalized heart-torso structures
MRI
Cardiac: 1.33×1.33×8mm
Whole-body:
1.56×1.56×5mm

BSP
123 electrodes, QRST @ 2KHz sampling

Gd-enhanced MRI
gold standard
Goals and procedures
• Quantitative reconstruction of tissue property and electrical
functioning
Tissue excitability
 TMP dynamics


Procedures





Initialization – TMP estimation with general normal model
Simultaneous estimation of TMP and excitability
Identify arrhythmogenic substrates (imaging + quantitative
evaluation)
Localize abnormality in TMP and excitability
Investigate the correlation of local abnormality between TMP
and excitability
Result: case II
• Infarct location: septal-inferior basal-middle LV
Simulated normal TMP
dynamics
Estimated TMP
dynamics
Result: case II
-Black contour: abnormal
TMP dynamics
-Color: recovered tissue
excitability
• Location, extent, and 3D complex shape of infarct
tissues
• Correlation of abnormality between electrical functions
and tissue property
– Abnormal electrical functioning occurs within infarct zone
– Border zone exhibits normal electrical functioning
Result: case II
Delayed activation: 4-9
Infarct: 3-14
Delay enhanced MRI registered with epicardial electrical
signals
H. Ashikaga, Am J Physiol Heart Circ Physiol, 2005
Result: case I
• Infarct: septal-anterior basal LV, septal middle LV
Result: case III
• Infarct: inferior basal-middle LV, lateral middle-apical LV
Result: case V
• Infarct: anterior basal LV, septal middle-apical LV
Quantitative validation
- EP:
Percentage of infarct in ventricular mass
- CE:
Center of infarct, labeled by segment
- Segments: A set of segments which contain infarct
- SO:
Percentage of correct identification compared to gold standard
Comparison with existent results
- EPD: difference of EP from gold standard
- CED: difference of CE from gold standard
- Dawoud et al: epicardial potential imaging
- Farina et al: optimization of infarct model
- Mneimneh et al: pure ECG analysis
Conclusion
• Personalized noninvasive imaging of volumetric cardiac
electrophysiology
Noninvasive
observations
Personalized
volumetric
cardiac
electrophysiology
Latent substrates