A chaos and fractal dynamics approach to the fracture mechanics Lucas Máximo Alves GTEME - Grupo de Termodinâmica, Mecânica e Eletrônica dos Materiais, Departamento de.

Download Report

Transcript A chaos and fractal dynamics approach to the fracture mechanics Lucas Máximo Alves GTEME - Grupo de Termodinâmica, Mecânica e Eletrônica dos Materiais, Departamento de.

A chaos and fractal dynamics
approach to the fracture mechanics
Lucas Máximo Alves
GTEME - Grupo de Termodinâmica,
Mecânica e Eletrônica dos Materiais,
Departamento de Engenharia de Materiais,
Universidade Estadual de Ponta Grossa
Caixa Postal 1007, Av. Gal. Carlos Calvalcanti, 4748,
Campus UEPG/Bloco L - Uvaranas, Ponta Grossa,
Paraná,CEP. 84030.000 Brasil.
The Experimental Problem
Dynamic Fracture
problem on fast crack
growth in PMMA for the
Fineberg-Gross
experiments
 A semi-infinite plane
plate under Mode-I
loading and plane strain
in elastodynamic crack
growth conditions

Fig. 1 - Experimental Setup
Experimental Results

Crack branching
generated by
instabilities on
different crack
growth velocities
in the Fineberg
experiments
Fig. 2 – Crack branching on PMMA
Fineberg
Experimental Results

Fig. 3 - Physical
aspect of the
fracture surface
with fractal
ruggedness for
diferent crack
growth velocities
A time delay phenonmenon betwen the
crack growth velocity and the fracture
surface
They showed that as the crack
speed reaches a critical value a
strong temporal correlation
between velocity, vo(t), and the
response in the form of the
fracture surface at Ao(t + )
takes place (having its notation
changed, in the present text, to
Lo(t) instead Ao(t) to designate
the fracture surface length). The
time delay measured between
this two greatness present a
value about of   3s for PMMA
and 1.0s for soda-lime glass,
for example, showing that it is
has given value for each
material.
Theoretical development

Fracture criterion of the basical equations of
the Classical Dynamic Fracture Mechanics
GoD  ( Lo , vo )  o ( Lo , vo )
where
GoD
o
Elastodynamic energy released rate
Elastodynamic work of fracture
Theorethical foundations
We need to modify the classical equations
using fractal theory into the elastic linear
fracture mechancs, for example:
 Classical Fracture
Fractal Fracture
d (F  U L )
Go 
dLo
Go  Ro
d ( F  U L ) dL
Go 
dL
dLo
Go  2 eff
dL
dLo
Theorethical foundations

Where dL/dLo it
is the
ruggedness
mathemathical
term that must
be used to
explain that
fractal
behaviour. Fig. 5 – Fractal fracture surface
model
The foundations of quasi-static and
dynamic fracture mechanics

Stationary problem and solution
d
F  U Ao  To 
GDo 
dAo
 v 
GoD ( Lo , vo )  Go ( Lo ).g  
 cR 
2 eff
dL
GDo 
 vo dL  dLo
1 

 cR dLo 
2 eff
dL
o (t ) 
vo ( Lo (t ))
 vo dL  dLo (t )
1 

 cR dLo (t ) 
The foundations of non-stationary
dynamic fracture mechanics

Non-stationary problem: equation and solution
P  U  T  
P   Ti ui ds
S
GoD

U  lim W ( ij )dA
*0
R
1
ui ui dA

*0 2
R
T  lim
 v 
 ( Lo , vo , t )  Go ( Lo ).g   f (t )
 cR 
Therefore the solution for dynamic fracture problem
must be a kind of “P-adic differential equation” with
invariance by scale transformation
Crack tip problem of the
process zone formation

The origin of the
time delay from
Fineberg-Gross
experimental
evidences is due
the instability of the
atoms during the
breaking of chemical
bonds at the crack
tip
Fig. 6 – IBM computational simulations of crack
tip on fracture phenomenon
Physical phenomenons at
the crack tip
Fig. 7 The time
delay
effect on
the
energy
flux at the
crack tip

Fundamental Hipothesis
The time, t, required for a
crack tip to advance a distance
equal to lo, as the crack grows
at crack growth velocity, vo,
introduces a process time,
given by t = lo/vo, that must
be compared to a
characteristic relaxation time, 
~ t, of the material to
determine if the process is
"fast" or "slow".

Fig. 8 - Transfer function with time delay
at the crack tip
Dynamic fracture model with a
time delay

Fig. 9 - Energy
flux to the crack
tip with time
delay
 The crack tip
varies with the
time and moves
with the crack
t
 ( Lo , vo , t )  Go ( Lo ) g ( )vo (t )

 o (t   )  o (Lo (t ), vo (Lo (t ))vo (Lo (t   ))
The crack tip feedback

(t   )  h( (t ))



feedback
Fig. 10 – The crack tip time delay with feeback
conditions
2 eff
dL
 o (t   ) 
vo ( Lo (t   ))
vo ( Lo (t )) dL dLo (t )
1
cR
dLo (t )
Oscillators systems


We need a self-similar
or a self-affine
equation!
with p-adic solutions?
f (t  n )  h(h(h(h....h( f (to ))...)))

Fig. 11 – Different
kinds of systems
Advanced considerations based on fractal
aspects of fracture surface for dynamic
fracture mechanics

Anzatz solution : A self-affine function
L(Lo(t   ))  h(L(Lo(t )))

Therefore we have: A self-affine crack growth
velocity model
dh( L(t )) dLo (t )
vo ( Lo (t   ))  vo ( Lo (t ))
dLo (t ) dL (t )
where we have
vo ( Lo (t ))  v( L(t ))dLo (t ) / dL(t )
A chaotic model for
dynamic fracture

x k 1
Logistic equations in fracture mechanics
vo ( t   ) dL
Go vo ( t ) dL 
vo ( t ) dL 
 1 


dL c R dLo 
cR
dLo
c R dLo 
2
dLo
vo ( t   ) dL
vo ( t ) dL   G o   Lo
xk 

dL
Loc
c R dLo
cR
dLo
2
xk 1  xk 1  xk 
dL o
 (t   )  h( (t ))  k 1  h( k )
 o


 of




2
Logistic-equation/map solutions

Use of the logistic-map on the fracture
mechanics
Classical Solution
2
vo  cR (1 
)
Go
where

2 dL
1
Go dLo
dL
1
dLo
vo  cR
Chaos Solution

vo (t ) dL 
vo (t )
vo (t   )   1 
cR dLo 

where
1  
2 dL
4
Go dLo
dL
1
dLo
vo  cR
Energy flux to the crack tip

Fig. 12 - Logistic solution for the fracture
problem
Results of the Model

Fig. 13 - Logistic Map for diferent periods or
cycles
Results of the Model

Fig. 14 - Different solutions for differents
stages k
Comparison between theory
and experiments
Experimental x Theoretical
1
0,8
0,6
0,4
0,2
3,
9
3,
6
3
3,
3
2,
7
2,
4
2,
1
1,
8
1,
5
1,
2
0,
9
0,
6
0
0
0,
3
Comprimento projetado da
trinca (mm)

tempo (s)
Seqüência1
Seqüência2
Seqüência3
Seqüência4
Comparison between theory
and experiments
Experimental
x
Theorethical
The existence of a critical velocity
voc  0,34cR
voc 
1
cR
3
Th inatingibility of the Rayleigh wave by the cracks
vo  cR (1 
2
)
Go
dL
 ??
dLo
vo  cR

vo (t ) dL 
vo (t )
vo (t   )   1 
cR dLo 

dL
1
dLo
vo  cR
Comparison between theory
and experiments
Experimental
x
Theorethical
Maximmum crack growth velocity
vo max  0,6cR

vo 
Bifurcation of the crack
2
cR
3
Chaotic nature of dynamic
fracture

Experimental x Theoretical
Fracture instability
criterions

Fig. 18 – Physical aspect of the crack
on instability phenomenon
Discussions
The logisitc
solution depends
on the
experimental
setup
Depending of the
experimental
setup, other
logistic maps can
be obtained
1


0,5
0
-1,5
-1
-0,5
0
0,5
1
Seqüência1
Seqüência2
-0,5
-1
-1,5
Fig. 19 – Logistic map

xk 1  xk 1  xk
2

Acknowledgments
This research work was in part supported
financially by CNPq, FAPESP, CAPES and one of
the authors, Lucas Máximo Alves thanks the
Brazilian program PICDT/CAPES and
PROPESQ-UEPG for concession of a
scholarship.
 The authors thanks your supervisor Prof. Dr.
Bernhard Joachim Mokross and too the Prof.
Leonid Slepyan for helpful discussions
 Prof. Benjamin de Melo Carvalho
References










- J. Fineberg, S. P. Gross, M. Marder and H. L. Swinney, Instability in dynamic
Fracture, Phys. Rev. Lett. 67, p. 457, (1991).
- J. Fineberg, S. P. Gross, M. Marder and H. L. Swinney, Phys. Rev. B, 45, n. 10,
p. 5146, (1992-II).
- B. V. Kostrov and L. V. Nikitin,. Archiwum Mechaniki Stosowanej, 22, 749-775,
(1970).
- R. M Christensen, Theory of Viscoelasticity: An Introduction, Academic Press,
New York, (1982).
- J. R. Willis, A comparison of the fracture criteria of Griffith and Barenblatt, J.
Mech. Phys. Solids, 15, 151, (1967).
- J. R. Walton, The dynamic energy release rate for steadily propagating
antiplane shear crack in a linearly viscoelastic body, J. App. Mech., 54, 635,
(1987).
- G. Golenievski, International Journal of Fracture, 33, 39-44 (1988).
- L. B. Freund, Dynamic Fracture Mechanics, (Cambridge University Press, 1990).
- Brian Lawn, Fracture of Brittle Solids, Cambridge University Press, (1995).
- H. L. Ewalds and R. J. H. Wanhill, Fracture Mechanics, (Edward Arnold
Publishers, 1993).
References









- Melvin F. Kanninen and Carl H. Popelar, Advanced Fracture Mechanics, (CRC
Press, Oxford 1985 p. 437, Chapter 7).
- T. L. Anderson, Fracture Mechanics, Fundamentals and Applications,Chapter 4,
section 4.1.2, Eq. s (4.14), (4.19) and (4.20), p. 215-218, 2nd. Edition, (CRC
Press, 1995).
- Eron Sharon and Jay Fineberg. Confirming the continuum theory of dynamic
brittle fracture for fast cracks, Nature, 397, 28 January, p. 333-335,(1999).
- P. D. Washabaugh and W. G. Knauss, A reconciliation of dynamics crack
velocity and Rayleigh wave speed in isotropic brittle solids. Int. J. of Fracture,
65, 97-114, (1994)).
- L. L. Mishnaevsky Jr., Int. J. of Fracture, 79, p. 341-350, (1996).
- A. A. Griffith, Phil. Trans. R. Soc. London, A221, p. 163, (1920).
- Alves, Lucas Máximo Rosana Vilarim da Silva, Bernhard Joachim Mokross, The
influence of the crack fractal geometry on the elastic plastic fracture mechanics.
Physica A: Statistical Mechanics and its Applications, 295, n. 1/2, p. 144-148, 12
June (2001).
- Huajian Gao, Surface roughening and branching instabilities in dynamic
fracture, J. Mech. Phys. Solids, 41, n. 3, p. 457-486, 1993; A theory of local
limiting speed in dynamic fracture 44, n. 9, p. 1453-1474, 1996.
- N. F. Mott, Brittle fracture in mild steel plates. Engineering, 165, 16-18,
(1948).
References








- L. I., Slepyan, Principle of Maximum Energy Dissipation Rate in Crack
Dynamics, J. Mech. Phys. Solids, 41, p. 1019-1033, (1993).
- W. G. Knauss and K. Ravi-Chandar, Int. J. of Fracture, 27, 127-143 (1985).
- Steven Paul Gross, Dynamics of fast fracture, Doctor Philosophy Dissertation,
Faculty of the Graduate School of the University of Texas at Austin, August
(1995).
- M. P. Marder and Steven P. Gross, Origin of crack tip instabilities, Journal
Mechanics and Physics Solids, 43, n. 1, p. 1-48, (1995).
- Alves, Lucas Máximo, A new fractal thermodynamic principle to the energy
dissipation in the fracture dynamics, to be published
- L. B. Freund; Energy Flux into Tip of an Extending Crack in an Elastic Solid,
Journal of Elasticity, 2, p. 341-349, (1972).
- Eron Sharon; S. P. Gross and J. Fineberg, Local Crack Branching as a
Mechanism for Instability in Dynamic Fracture, Phys. Rev. Lett., 74, 5096,
(1995).
- J. F. Boudet; S. Ciliberto and V. Steinberg, Dynamics of crack propagation in
brittle materials, J. Phys. II France, 6, p. 1493-1516, (1996).
References







- J.G. Williams, and A. Ivankovic, Limiting crack speeds in dynamic tensile
fracture test, International Journal of Fracture, 51, p. 319-330, (1991).
- N. Fiedler-Ferrara and C. P. C. do Prado, Caos, Uma Introducção, (Ed. Edgard
Blücher Ltda, Brazil, 1994).
- S. Neil Rasband, Chaotic Dynamics of Non-Linear Systems, (John Wiley, New
York p. 23, 1990).
- C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems, (Cambridge
University Press, Cambridge, England, 1993).
- Peter Gumbsch. An atomistic study of brittle fracture: Toward explicit failure
criteria from atomistic modeling. Journal of Materials Research, 10, 11, p. 28972907, (1995).
- Peter Gumbsch, S. J. Zhou and B. L. Holian, Molecular dynamics investigation
of dynamic crack stability, Phys. Rev. B, 55, n. 6, 1 February (1997).
- Peter Gumbsch, In: Computer Simulation in Materials Science, 227-244,
edited by H. O. Kirchner, L. Kubin and V. Pontikis (Kluwer Academic Publishers,
Dordrecht, Netherlands, 1996).
References





- B. Cotterell and J. R. Rice, Int. J. Fract.Mech., 16, p. 155, (1980).
- E. Yoffe, Phil. Mag., 42, p. 739, (1951).
- Eron Sharon; Steven Paul Gross and Jay Fineberg, Energy dissipation in
dynamic fracture, Physical Review Letters, 76, n. 12, p. 2117-2119, 18 March
(1996).
- Honglai Tan and Wei Yang, Nonlinear motion of crack tip atoms during
dislocation emission processes, J. Appl. Phys., {\bf 78}, n.12, 15 December
(1995).
- R. Mohan; A. J. Markworth and R. W. Rollins, Effects of dissipation and driving
on chaotic dynamics in an atomistic crack-tip model, Modeling Simul. Mater. Sci.
Eng., 2, p. 659-676, (1994).