Residual Stress Build Up Baseline NADCA Test Determine how quickly stress builds? What happens when tensile drops? What other factors contribute? How.
Download ReportTranscript Residual Stress Build Up Baseline NADCA Test Determine how quickly stress builds? What happens when tensile drops? What other factors contribute? How.
Residual Stress Build Up Baseline NADCA Test Determine how quickly stress builds? What happens when tensile drops? What other factors contribute? How virgin base H-13 is affected? Die Materials Committee March 5, 2003 Baseline Testing Pre - Dip tank testing H-13 Dip Tank Specimen 2” each side 7” virgin specimen no surface treatments polished corners and side Proto X-ray include corners Case Western specified measurement points baselines All corners square +.003” to -.003” All corners have .010” radius Cycles till measured 0,10,100,500,1000,5000,10000,15000 Dip tank testing – no v or p H-13 Dip Tank Specimen 2” each side Immersion aluminum 7” All corners square +.003” to -.003” All corners have .010” radius 12 seconds immersion 24 seconds air cool Water based lube 50:1 Repetitive cycles X-ray diffraction measure micro hardness before and after readings - softening measure corner cracking photograph x-ray MEASURED surface area Photography not performed on this 1st specimen Proto X-Ray Reading Criteria location measurements Corners 1,2,3,4,5,6,7,8 Middle – 1,3,5,7 3 points each corner (avg) 3 points each middle (avg) 45o at point #2 (middle) – only for zero cycles Measurements in ksi -1ksi = 6.895Mpa Error range ∓ 5 with average ∓ 2 (zero-1000) Error range ∓ 8 with average ∓ 5 (5000 cycles) Error range ∓ 8 with average ∓ 4 (10,000 cycles) Error range ∓ 2 with average ∓ 1 (15,000 cycle) Phase II – Baseline Testing Side 5 Side 1 2” each side H-13 Dip Tank Specimen .5” 3.5” • 6ea per side x 4 = 24 points 1” 3.5” 1.0” Measured corners Measured middle side 1,3,5,7 Axial 3ea per side x 4 = 12 Trans 3ea per side x 4 = 12 Total of 48 x-ray diffraction measurements from 36 locations All corners square +.003” to -.003” All corners have .010” radius What the following data proves Tensile relieved by cracking Tensile rebuilds to higher levels Subsequent cracking develops Each time tensile drops to lower level. No Dip Cycles - Baseline H-13 Specimen No Cycles Corner 1 2 3 4 5 6 7 8 +5 Compressive Tensile Axial KSI Error +or- 2 to 4 -14 -12 -17 -20 -4 -8 -8 -11 -5 -7 -13 -20 -12 -11 -1 -11 -19 -5 -9 -9 -18 -13 -6 Transverse KSI - Point 2 Error +or- 2 to 4 -56 -64 -64 -56 -51 -53 -64 -55 45o - Point 2 Error +or- 1 to 3 -36 -48 -36 -30 -23 -38 -42 -25 Middle 1 3 5 7 +6 -9 -8 -22 -14 -6 -20 -16 12 -21 -61 -61 -65 -56 -53 -59 +5 +3 -48 -51 Polishing after machining creates compressive -55 -61 -56 -58 values. -38 -37 -40 -22 All but 4 measurements indicate polished compression 10 Cycles H-13 Specimen 10 Cycles Corner Compressive Axial KSI Error +or- 2 to 4 +61 +59 +53 +56 +63 +62 +61 +48 +64 +53 +67 +50 +63 +50 +66 +69 1 2 3 4 5 6 7 8 +64 +65 +68 +52 +55 +55 +58 +69 1 3 5 7 +14 +11 +40 +42 +17 +27 +48 +39 After only 10 cycles all Tensile Transverse KSI Error +or- 2 to 4 Middle +15 +25 +25 +31 +30 +43 +25 +30 +20 +23 +39 +42 +29 +40 +45 +26 readings indicate high tensile levels All compressive stress converts to tensile 100 Cycles H-13 Specimen 100 Cycles Corner Axial KSI Error +or- 2 to 3 +48 +48 +47 +54 +48 +48 +41 +40 +47 +43 +53 +42 +45 +38 +57 +57 1 2 3 4 5 6 7 8 +41 +49 +47 +30 +39 +57 +42 +51 1 3 5 7 +12 +12 +14 +30 +35 +24 +11 +28 +16 +37 +37 +28 At 100 cycles tensile values have Compressive Tensile Transverse KSI Error +or- 2 to 3 Middle +19 +33 +20 +38 decreased +20 +22 +35 +38 slightly +30 +24 +35 +24 Tensile stress values reduced by cracking 500 Cycles H-13 Specimen 500 Cycles Corner Axial KSI Error +or- 1 to 2 +55 +53 +51 +55 +58 +48 +49 +45 +56 +52 +53 +47 +57 +52 +59 +58 Compressive Tensile Transverse KSI Error +or- 1 to 2 1 2 3 4 5 6 7 8 +53 +57 +66 +53 +55 +58 +54 +55 1 3 5 7 +17 +24 +19 +34 +36 +33 +34 +28 +48 +30 +19 +28 +21 +27 +41 +44 +39 +28 +46 +45 At 500 cycles tensile values are again increasing Middle Tensile stress again on the rise +32 +33 +31 +30 1000 Cycles H-13 Specimen 1000 Cycles Corner Axial KSI Error +or- 1 to 3 +53 +54 +51 +50 +71 +64 +36 +36 +58 +57 +54 +50 +64 +61 +71 +48 Compressive Tensile Transverse KSI Error +or- 1 to 2 1 2 3 4 5 6 7 8 +61 +51 +69 +44 +57 +61 +67 +67 1 3 5 7 +44 +42 +44 +44 +42 +54 +42 +40 +54 +42 +41 +42 +42 +41 +42 +49 +46 +36 +49 +46 At 1000 cycles tensile values are almost at same level Middle +44 +40 +42 +36 as 10 cycles Tensile stress approaching values seen at 10 cycles 5000 Cycles H-13 Specimen 5000 Cycles Corner Axial KSI Error +or- 2 to 9 +70 +70 +53 +58 +72 +70 +62 +69 +87 +81 +76 +60 +87 +65 +68 +66 Compressive Tensile Transverse KSI Error +or- 3 to 8 range 1 2 3 4 5 6 7 8 +73 +64 +72 +53 +83 +69 +81 +66 1 3 5 7 +31 +27 +34 +54 +47 +37 +45 +38 +59 +46 +35 +35 +30 +49 +44 +45 +41 +38 +58 +54 At 5000 cycles tensile values are almost at same level Middle +43 +60 +55 +47 as 10 cycles Tensile stress continuing increase 10000 Cycles H-13 Specimen 10000 Cycles Corner Compressive Axial KSI Error +or- 1 to 6 +84 +84 +81 +80 +71 +77 +78 +77 +87 +85 +84 +73 +90 +97 +81 +86 1 2 3 4 5 6 7 8 +75 +81 +79 +79 +77 +88 +76 +83 1 3 5 7 +32 +35 +33 +39 +10 +41 +39 +59 At 10000 cycles tensile Tensile Transverse KSI Error +or- 2 to 8 range Middle +42 +40 +37 +59 +23 +48 +51 +53 has increased above +53 +49 +31 +56 +75 +13 +55 +51 the 5000 cycle point Tensile stresses at highest levels 15000 Cycles H-13 Specimen 15000 Cycles Corner Compressive Axial KSI Error +or- 1 to 2 +67 +75 +73 +65 +69 +70 +59 +54 +66 +57 +72 +76 +72 +73 +62 +65 1 2 3 4 5 6 7 8 +50 +61 +59 +38 +48 +72 +76 +43 1 3 5 7 +32 +34 +37 +37 +27 +34 +45 +41 At 15000 cycles tensile Tensile Transverse KSI Error +or- 1 range Middle +30 +50 +52 +23 +37 +31 +26 +50 +55 +33 +52 +53 values move lower again +50 +29 +47 +46 Tensile stress drops off again – by larger amount when visible cracking develops What was confirmed? Cycling of tensile stresses and micro cracking occurs on first 10 shot of unprotected steel. Virgin steel with no surface treatment and only polished compression, changes rapidly to tensile stresses increases between 100 & 10000 cycles Visible tensile stress reading at 15000 occurs Beneficial prior to use to induce high levels of subsurface compressive stress values when die is NEW to prevent initial cracking.