Mathematics 252 - Chemistry 302 Mathematics for Chemistry II Math 252 – Chem 302 • • • • Instructor: Dr.
Download ReportTranscript Mathematics 252 - Chemistry 302 Mathematics for Chemistry II Math 252 – Chem 302 • • • • Instructor: Dr.
Mathematics 252 - Chemistry 302 Mathematics for Chemistry II Math 252 – Chem 302 • • • • Instructor: Dr. D. Keefe Office TC-107 / TC-137 (laboratory) Phone 563-1185 / 1462 (laboratory) email: [email protected] Lectures: T 10:00 – 11:15 am Th 8:30 – 9:45 am Laboratories: TBA. Mark Structure – – – Laboratories / Assignments Term Tests Final Exam 40% 30% 30% Math 252 – Chem 302 • Syllabus – – – – – Solutions of nonlinear equations Solutions of systems of linear equations (matrix inversion) Interpolation / extrapolation Integration Least squares regression • • – – linear nonlinear Differential equations Matrix eigenvalue-eigenvector problems Math 252 – Chem 302 • Term Tests week of Feb 11 – 15 week of Mar 17 – 21 – must be written on the day they are scheduled. • • – doctor’s certificate or other supporting document to be eligible for a rewrite. Otherwise a mark of 0 (zero) will be given for the test University closed test next scheduled lecture period. Math 252 – Chem 302 • • • Supplementary Examination Supplementary Examinations are NOT available for this course. Office Hours TBA Website Assignments, copies of lecture transparencies and other course materials are posted at http://faculty.cbu.ca/dkeefe/chem302 Introduction • Many problems in chemistry well suited for solution on a microcomputer – Kinetics – Quantum chemistry – Spectroscopy • Complexity • Repetition Introduction • Use – Maple • Commercial Mathematics software – Microsoft Excel • Spreadsheet with some numerical applications – C++ • High-level programming language • Write our own code • Review Math 187 notes Number Systems • Understand how a computer stores information • Decimal – – – – 10 integers (0,1,2,3,4,5,6,7,8,9) Decimal point positive (+) & negative (-) signs Digits to left of decimal point represent successive positive powers of ten – Digits to right of decimal point represent successive negative powers of ten – 1234.56 1×103 + 2 ×102 + 3 ×101 + 4 ×100 + 5 ×10-1 + 6 ×10-2 • Not practical for computers – based on binary states Number Systems • Binary – Base 2 – 2 integers (0,1) – Binary point – positive (+) & negative (-) signs – Digits to left of binary point represent successive positive powers of two – Digits to right of binary point represent successive negative powers of two – (1011.01)2 1×23 + 0×22 + 1×21 + 1×20 + 0×2-1 + 1×2-2 Number Systems • Octal – Base 8 – 8 integers (0,1,2,3,4,5,6,7) – Octal point – positive (+) & negative (-) signs – Digits to left of octal point represent successive positive powers of eight – Digits to right of octal point represent successive negative powers of eight – (1234.56)8 1×83 + 2×82 + 3×81 + 4×80 + 5×8-1 + 6×8-2 Number Systems • Hexadecimal – Base 16 – – – – 16 integers (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) Hexadecimal point positive (+) & negative (-) signs Digits to left of hexadecimal point represent successive positive powers of sixteen – Digits to right of hexadecimal point represent successive negative powers of sixteen – (1AF4.C6)16 1×163 + A×162 + F×161 + 4×160 + C×16-1 + 6×16-2 Number Systems Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Binary 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 Octal 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E Number Systems Decimal 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Binary 10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010 11011 11100 11101 11110 Octal 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 Hexadecimal 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E Converting between number systems • Binary, Octal, Hexadecimal to Decimal – Expand the powers of 2,8 or 16 into powers of 10 (1011.01)2 =(1×23 + 0×22 + 1×21 + 1×20 + 0×2-1 + 1×2-2)2 =(1×8 + 0×4 + 1×2 + 1×1 + 0/2 + 1/4)10 =(11.25)10 Converting between number systems (1234.56)8 =(1×83 + 2×82 + 3×81 + 4×80 + 5×8-1 + 6×8-2)8 =(1×512 + 2×64 + 3×8 + 4×1 + 5/8 + 6/64)10 =(668.71875)10 (1AF4.C6)16 =(1×163 + A×162 + F×161 + 4×160 + C×16-1 + 6×16-2)16 =(1×4096 + 10×256 + 15×16 + 4×1 + 12/16 + 6/256)10 =(6900.7734375)10 Converting between number systems • Decimal to Binary, Octal, Hexadecimal – Convert the integer and fraction part separately – Integer: successively divide by 2, 8 or 16 keeping track of remainders – Fraction: successively multiply by 2, 8 or 16 keeping 11.25of integer part track 10 2 11 R 0 .25 2 5 1 0 .50 2 1 1 .00 1 0 0 1 1 1 .2 5 1 0 1 0 1 1 .0 1 2 Converting between number systems 668.71875 10 8 668 R 0 .71875 8 83 4 5 .75 10 3 6 .00 1 2 0 1 6 6 8 .7 1 8 7 5 1 0 1 2 3 4 .5 6 8 6 9 0 0 .7 7 3 4 3 7 5 1 0 R 0 .7734375 16 431 4 12 .375 26 15 6 .000 1 10 0 1 16 6900 6 9 0 0 .7 7 3 4 3 7 5 1 0 1 A F 4 .C 6 1 6 Converting between number systems 1 2 3 4 .5 6 7 1 0 2 1234 R 617 0 308 1 154 0 77 0 38 1 19 0 9 1 4 1 2 0 1 0 0 1 0 .5 6 7 2 1 .1 3 4 0 .2 6 8 0 .5 3 6 1 .0 7 2 0 .1 4 4 0 .2 8 8 0 .5 7 6 1 .1 5 2 1 2 3 4 .5 6 7 1 0 1 0 0 1 1 0 1 0 0 1 0 .1 0 0 1 0 0 0 1 ... 2 Converting between number systems 0 .1 1 0 0 .1 2 0 .2 0 .4 0 .8 1 .6 1 .2 0 .1 1 0 0 .0 0 0 1 10 0 1 1... 2 Converting between number systems Between Binary, Octal, & Hexadecimal 8=23 (use 3 binary digits for one octal digit) 16=24 (use 4 binary digits for one hexadecimal digit) 1010011100.10111 2 1010011100.10111 2 1 010 10 1001 1100.1011 1000 2 011 100.101 110 2 1234.56 8 29C .B 8 16