Modeling Electrical Systems With EMTP-RV EMTP-RV Package includes: - EMTP-RV, the Engine; - EMTPWorks, the GUI; - ScopeView, the Output Processor. EMTP-RV key features:  Reference in transients.

Download Report

Transcript Modeling Electrical Systems With EMTP-RV EMTP-RV Package includes: - EMTP-RV, the Engine; - EMTPWorks, the GUI; - ScopeView, the Output Processor. EMTP-RV key features:  Reference in transients.

Modeling Electrical
Systems With EMTP-RV
EMTP-RV Package includes:
- EMTP-RV, the Engine;
- EMTPWorks, the GUI;
- ScopeView, the Output Processor.
EMTP-RV key features:

Reference in transients simulation

Solution for large networks

Provide detailed modeling of the network component including
control, linear and non-linear elements

Open architecture coding that allows users customization and
implementation of sophisticated models

New steady-state solution with harmonics

New three-phase load-flow

Automatic initialization from steady-state solution

New capability for solving detailed semiconductor models

Simultaneous switching options for power electronics
applications
EMTP-RV Applications:
EMTP-RV is suited to a wide variety of power system
studies including and not limited to:
Lightning surges
Ferroresonance
Switching surges
Motor starting
Temporary overvoltages
Steady-State analysis of
unbalanced system
Insulation coordination
Power electronics and FACTS
General control system design
Power Quality issues
Capacitor bank switching
Series and shunt resonances
Distribution networks and
Distributed generation
Power system dynamic and load
modeling
Subsynchronous resonance and
shaft stresses
Power system protection issues
A
B
C
D
E
F
G
H
EMTP-RV Advanced Practical Applications
www.emtp.com
1
1
Tm
DPIM1
2
Lightning Strike Near a 765 kV GIS
Single-phase Induction Machine
2
+
q
T eg
Speed
?m
d +
0.25hp
3
3
765 kV River Crossing with the
Special Use of Line Arresters
Arc Instability behind Shunt
Reactor Breaker Failures
Omega_1
Pe
Efss
MW,MX,PF
DEV2
Ef
4
SM1
4
Z Dist
DEV9
Va,Vb,Vc
SM
Variable Static Load Modeling
and Machine Dynamics
?m
Np,Nq
Kp,Kq
60 Hz only
Windmill
Speed
Tm
13.8kV
450MVA
MW,MX,PF
ASM1
5
Wind Power & Multi-Machine
Transient Stability of Large Networks
DEV4
S ASM
5
Va,Vb,Vc
ASM
S
Np,Nq
Kp,Kq
SVC_1
DEV6
6.6kV
11000hp
60 Hz only
DEV10
A
B
C
D
C
E
F
G
L
H
Simulation Options
Load-Flow solution
- The electrical network equations are solved using complex phasors. The active (source)
devices are only the Load-Flow devices (LF-devices). A load device is used to enter PQ
load constraint equations.
- Only single (fundamental) frequency solution is achievable in this version. The solution
frequency is specified by ‘Default Power Frequency’ and used in passive network lumped
model calculations.
- The same network used for transient simulations can be used in load-flow analysis. The
EMTP Load-Flow solution can work with multiphase and unbalanced networks.
- The control system devices are disconnected and not solved.
- This simulation option stops and creates a solution file (Load-Flow solution data file). The
solution file can be loaded for automatically initializing anyone of the following solution
methods.
Steady-state solution
- The electrical network equations are solved using complex numbers. This option can be
used in the stand-alone mode or for initializing the time-domain solution.
- A harmonic steady-state solution can be achieved.
- The control system devices are disconnected and not solved.
- Some nonlinear devices are linearized or disconnected. All devices have a specific
steady-state model
- The steady-state solution is performed if at least one power source device has a start time
(activation time) lower than 0.
Simulation Options (Con’t)
Time-domain solution
- The electrical network and control system equations are solved using a
numerical integration technique.
- All nonlinear devices are solved simultaneously with network equations. A
Newton method is used when nonlinear devices exist.
- The solution can optionally start from the steady-state solution for initializing
the network variables and achieving quick steady-state conditions in timedomain waveforms.
- The steady-state conditions provide the solution for the time-point t=0. The
user can also optionally manually initialize state-variables.
Frequency scan solution
- This option is separate from the two previous options. All source frequencies
are varied using the given frequency range and the network steady-state
solution is found at each frequency.
EMTPWorks features:
 Object-oriented design fully compatible with Microsoft Windows
 Powerful and intuitive interface for creating sophisticated Electrical
networks
 Drag and drop device selection approach with simple connectivity
methods
 Both devices and signals are objects with attributes. A drawing canvas
is given the ability to create objects and customized attributes
 Single-phase/three-phase or mixed diagrams are supported
 Advanced features for creating and maintaining very large to extremely
large networks
 Large number of subnetwork creation options including automatic
subnetwork creation and pin positioning. Unlimited subnetwork nesting
level
 Options for creating advanced subnetwork masks
 Multipage design methods
 Library maintenance and device updating methods
Built-in Libraries:
advanced.clf
Pseudo Devices.clf
RLC branches.clf
Work.clf
control.clf
control devices of TACS.clf
control functions.clf
control of machies.clf
flip flops.clf
hvdc.clf
lines.clf
machines.clf
meters.clf
meters periodic.clf
nonlinear.clf
options.clf
phasors.clf
sources.clf
switches.clf
symbols.clf
transformations.clf
transformers.clf
Provides a set of advanced power electronic devices
Provides special devices, such as page connectors. The port devices are
normally created using the menu “Option>Subcircuit>New Port Connector”, they
are available in this library for advanced users.
Provides a set of RLC type power devices. .
This is an empty library accessible to users
The list of primitive control devices.
This control library is provided for transition from EMTP-V3. It imitates EMTP-V3
TACS functions.
Various control system functions.
Exciter devices for power system machines.
A set of flip-flop functions for control systems.
Collection of dc bridge control functions. Documentation is available in the
subcircuit.
Transmission lines and cables.
Rotating machines.
Various measurement functions, including sensors for interfacing control device
signals with power device signals.
Meters for periodic functions.
Various nonlinear electrical devices.
EMTP Simulation options, plot functions and other data management functions.
Control functions for manipulating phasors.
Power sources.
Switching devices.
These are only useful drawing symbols, no pins.
Mathematical transformations used in control systems.
Power system transformers.
Built-in Library of Examples:
ScopeView
ScopeView is a data acquisition and signal processing software
adapted very well for visualisation and analysis of EMTP-RV results.
It may be used to simultaneously load, view and process data from
applications such as EMTP-RV, MATLAB and Comtrade format files.
Multi-source data importation
Cursor region information
ScopeView (Con’t)
Function editor of ScopeView
Typical mathematical post-processing
Typical Designs:
A
B
C
D
E
F
G
H
I
J
K
L
Insulation Coordination of a 765 kV GIS
1
- Backflashover Case
- Impulse Footing Resistance of the stricken
Tower may be represented by Ri = f(I)
- Usage of ZnO model based on IEEE SPD WG
- Frequency-Dependant Line modeling
200 kA 3/100 us
Lightning Stroke
2
I/O FILES
MPLOT
foudre_30km_ex2.lin
foudre_300m_ex1.lin
2
LINE DATA
LIGHTNING_STROKE
Network
LINE DATA
model in: foudre_30km_ex2_rv.pun
765 kV Line
Tower_top
+ VM ?v
Air-Insulated Substation
Gas-Insulated Substation
model in: foudre_300m_ex1_rv.pun
Air-Insulated Substation
?v
+ VM
Trans_c
?v
SOURCE_NETWORK
BUS_NET
735kV /_0
a
b
+
+
+
+
+
a
b
+
+
c
300 m
bushing
CB_a
+
?v
CB_b
VM +
?v
CB_c
VM +
+
VM
300 m
b
+
3
?v
a
?v
c
+ VM
Trans_a
+
+
+
c
+
30 km
VM
1M
+
+
cond_c
VM +
?v
+ VM
Trans_b
Open Circuit-Breaker
?v/?v/?v
+
3
1
Simulation
options
+
1M
1M
+
?i
?i
L10
C3
+
+
?i
+
+
+
48
+
+
+
L12
52 m
+
+
+
48 m
C2
4nF
52
+
+
+
+
C1
4
L11
+
?i
+
L2
?i
+
+
To eliminate
undesirable reflexions
L3
TOWER3
Part=TOWER_model1ohm
L1
TOWER2
Part=TOWER_model15_f
+
TOWER1
Part=TOWER_model15_1
+
+
25 m
?i
4
5
5
0.1nF
Gas-filled
CVT 588 kV Zno Bushing
A
B
C
D
E
F
G
H
4nF
4nF
+
0.1nF
0.1nF
Inductive VT
I
Gas-filled
Bushing
J
Power
588 kV Zno
Transformer
K
L
A
B
C
D
E
F
G
H
1
1
Field Recording
(10-08-1986)
Validation of the Secondary Arc
M odel with IREQ Laboratory Tests
EMTP-RV Simulation
(05-22-2005)
2
2
R2
+
?i
SW1
+
100ms/200ms/0
+
0.7,13Ohm
1.60uF
C2
Secondary arc
300
RL1
+
+
+
3
1.05uF
C3
+
0.2
AC1
+
+
66.4kVRMS /_0
0.2
R3
DEV1
3
Sec_ARC_a
R1
4
4
Primary Arc: 5 kA eff
Secondary Arc: 40 A
Wind Speed: 9.7 km/h
Secondary Arc Duration: 1.04 sec.
315 kV insulator string, l=2.3 m
5
5
I/O FILES
A
B
C
D
E
F
G
H
O
N
M
L
K
J
I
H
G
F
E
D
C
B
A
P
1
1
Switching of A 420 kV Three-Phase Shunt-Reactor
I/O FIL ES
State of the art simulation introducing:
- A realistic model of a three-phase shunt reactor taking into account
the asymetrical couplings of the magnetic circuit;
- A realistic circuit-breaker model based on the well-known
Cassie - Mayr modified arc equations.
2
3
2
3
4
4
+
+
0. 5
1. 6nF
0. 5
+
+
+
1uH
1uH
a
BUS24
DEV2
DEV1
Sim plifie d Arc M ode l
ba s e d on
M a y r's & Ca s s ie s e qua tions
Sim plifie d Arc M ode l
ba s e d on
M a y r's & Ca s s ie s e qua tions
5
a
+
CB_ARC_a
+
CB_ARC_a
out
in
out
in
0. 375nF
BUS23
0. 75nF
1. 6nF
+
C8
0. 05nF
+
+
R12
+
Line
+
+
+
+
5
+
0. 5
1. 6nF
0. 5
1. 6nF
0. 75nF
350
1uH
1uH
m1
+ VM
?v
3000
b
+
200k
1. 15nF
+
+
6
+
+
+
b
+
1uH
1uH
4nF
C11
1. 15nF
ba s e d on
M a y r's & Ca s s ie s e qua tions
out
in
out
in
+
Sim plifie d Arc M ode l
Sim plifie d Arc M ode l
ba s e d on
M a y r's & Ca s s ie s e qua tions
c
+
DEV6
DEV5
c
1. 6nF
+
0. 75nF
0. 5
1. 6nF
+
+
Line CVT
200k
C13
a
4nF
+
200nF
405kVRM SLL / _- 30
0. 5
+
+
AC1
+
6
0. 75nF
+
C9
0. 05nF
0. 375nF
+
b
CB_ARC_a
+
CB_ARC_a
out
c
Sim plifie d Arc M ode l
ba s e d on
M a y r's & Ca s s ie s e qua tions
in
out
in
+
b
10
20 m
DEV4
DEV3
Sim plifie d Arc M ode l
ba s e d on
M a y r's & Ca s s ie s e qua tions
+
25uH
+
30m H
0. 8
+
+
+
+
a
65 m
+
R10
+
c
CB_ARC_a
+
CB_ARC_a
0. 05nF
C10
7
7
Network
Substation
Double-break 420 kV SF6 C.-B.
CT
420 kV Busbar
420 kV Busbar
CVT
Three-phase 420 kV Shunt-Reactor
8
8
Three-Phase 420 kV 100 MVARS Shunt Reactor
F= 0.548 Wb, N=1409 turns, L1=5.617 H
For mu (50 Hz) = 0.06 H/m:
Xac=Xca= 9 Ohms
Xba=Xbc=7 Ohms
Xab=14 Ohms
Xaa= 1741 Ohms
Xbb= 1750 Ohms
Xcc=1741 Ohms
9
g = 12 mm
2900 mm
For mu (700 Hz) = 0.01 H/m:
2x
x
x= 710 mm
1
0
9
1
0
Xac=Xca= 54 Ohms
Xba=Xbc=42 Ohms
Xab=84 Ohms
Xaa= 1741 Ohms
Xbb= 1750 Ohms
Xcc=1741 Ohms
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
40 M W
M W,M X,PF
Ou t
a v r_ g o v e rn o r_ p u
AVR_ Go v _ 5
Ou t
AVR&Gov
(pu)
IN
?m
1
+
CP
+
SM
?m
AVR&Gov
(pu)
1 3 .8 k V
2 0 0 M VA
3
80
SM
?i
Np, Nq
Kp, Kq
80
IN
R3
?m
1
Ou t
DEV4
SM 9
1 3 .8 /2 3 0
AVR_ Go v _ 9
5 /5 .1 /0
5 /5 .1 /0
1 E1 5 /1 e 1 5 /0
2
60 Hz only
BUS1
290
+
240 M W
Yg Yg _ n p 5
60
+
1
Va ,Vb ,Vc
1
2
CP
1 4 4 .8
Z Dist
6 9 /0 .6 9
2
+
2
+
Q
P
p7
s c ope
P_ Va r_ s p e e d
3
v
AVR&Gov
(pu)
IN
+
9 6 .5
8250 M W
+
CP
1 E1 5 /1 E1 5 /0
1 E1 5 /1 E1 5 /0
1 E1 5 /1 E1 5 /0
9000 M W
230k V
1 2 0 0 0 M VA
+
2 3 0 /2 6 .4
C1 2
SM 1 0
CP2
0 .2 5 u F
?
C8
Q_ Va r_ s p e e d
s c ope
Kp, Kq
+
1
2 3 0 /7 1
0 .2 5 u F
Sq Ca g e _ 4
162 M W
+
CP2
3 x 1M W Doubly-fed
with PWM controller
(Variable speed)
SM
?m
1
0 .1 3
2 .2 Oh m
6 9 /3 .3
Ou t
AVR&Gov
(pu)
IN
2
2
Z Dist
M W,M X,PF
45 M W
Np, Nq
Q
Va ,Vb ,Vc
DEV1
BUS5
DEV3
+
0 .1 ,0 .5 Oh m
1 3 .8 /2 3 0
BUS7
p6
1
60 Hz only
BUS9
2
2
AVR_ Go v _ 1 0
132 M W
60 Hz only
P
RL 1
0 .2 ,1 Oh m
6 9 /3 .3
1 3 .8 k V
2 0 0 M VA
M W,M X,PF
+
1 3 .8 /2 3 0
Yg Yg _ n p 4
+
ASM S
Large Gen.-Load Center
SM 5
Va ,Vb ,Vc
1
M
Z Dist
0 .0 4 ,0 .2 Oh m
1
1 3 .8 /2 3 0
Qt_ Wi n d Ge n
s c ope
R4
+
+
77 M W WIND
IM GENERATION
(Constant speed)
SM 6
2
0 .1 ,0 .5 Oh m
50
ASM S
L
Np, Nq
Kp, Kq
1
6 9 /3 .3
2
?m
1 3 .8 k V
5 0 M VA
1 3 .8 k V
5 5 0 M VA
VM
+
2
K
? v /? v /? v
Pt_ wi n d Ge n
s c ope
2
ASM S
J
CP2
+
+
6 9 /3 .3
SM
Q_ Sta t_ 3 0
s c ope
m _ 6 9 k V_ wi n d
1
520 M W
SM 7
1
2
ASM S
I
1
P
p4
Q
Sq Ca g e _ 1
4 x (10 X 2 MW)
induc. machine
pf 0.85
H
AVR_ Go v _ 6
+/- 30 MVARS
STATCOM
1
G
SM
F
Ou t
E
DEV6
AVR_ Go v _ 7
D
AVR&Gov
(pu)
C
IN
B
+
-1 /1 E1 5 /0
A
50
+
CP
+
1
v
R5
+
1
Z Dist
Va ,Vb ,Vc
m _ Su b s _ B_ 2 3 0 k V
+ VM
CP2
+
3
2
2
3
2
5 0 0 /2 3 0 /5 0
1
1 3 .8 /2 3 0
SM 8
1
5 0 0 /2 3 0 /5 0
2 x 240 M W
AVR_ Go v _ 8
76 M W
SM 1
1
3
p2
Q
P
1
2
1
+
3
5 0 0 /2 3 0 /5 0
+
R1
?i
1600 M W
240 M X
7
P
P_ L o a d
s c ope
Q_ L o a d
s c ope
Q
+
2000uF
p3
pF=88%
+
+
+
1
6
96uF
+/- 400 M vars
STATCOM
in Substation B
+
0 .0 5 u F
200 M W
P_ Ex c h
+
2 3 0 /2 6 .4
0 .0 1 3
0 .2 2 Oh m
?
220 km
Se r_ C_ 2
SM 4
0 .3 u F
s c ope
96uF
Ou t2
+
?m
40%
Q_ Ex c h
s c ope
+
1 E1 5 /1 E1 5 /0
1 E1 5 /1 E1 5 /0
1 E1 5 /1 E1 5 /0
SM
IN
AVR&Gov
(pu)
?v
15uF
2
140 km
+
3
Ou t1
In 2
+
Ou t
VM
Su b s ta ti o n _ C
Su b s ta ti o n _ B
Ou t2
140 km
2
SM 3
In 1
Ou t1
Su b s ta ti o n _ A
In 2
?m
AVR_ Go v _ 4
+
1
+
Se r_ C_ 1
In 1
SM 2
SM
IN
AVR&Gov
(pu)
7
+
3
SM
IN
AVR&Gov
(pu)
Ou t
m _Load_230k V
5 0 0 /2 3 0 /5 0
2
220 km
-1 /1 E1 5 /0
?m
AVR_ Go v _ 2
AVR_ Go v _ 3
40%
+
Ou t
280 km
1
+
2
+
5 0 0 /1 3 .8 /1 3 .8
+
?m
SM
P
p1
s c ope Qt
Q
Ou t
IN
AVR&Gov
(pu)
s c ope Pt
1 3 .8 k V
4 0 0 M VA
6
110
5
1
?m
1300 M W
L
+/- 150 M X
SVC
48uF
+
SM
AVR_ Go v _ 1
C
60 Hz only
48uF
Ou t
Np, Nq
Kp, Kq
900 M W
? v /? v /? v
1 3 .8 k V
1 2 5 M VA
AVR&Gov
(pu)
IN
Z Dist
DEV5
M W,M X,PF
Np, Nq
Kp, Kq
Va ,Vb ,Vc
SW6
+
-1 /1 E1 5 /0
60 Hz only
DEV2
5
4
M W,M X,PF
CP
6 9 /2 2 5
SVC_ 1
2
180 M W
1 9 3 .1
?i
4
2 5 .5 /1 2
ASM
+
Va ,Vb ,Vc
Va ,Vb ,Vc
Np, Nq
Kp, Kq
M W,M X,PF
60 Hz only
Va ,Vb ,Vc
Np, Nq
Kp, Kq
S
6 .6 k V
7 7 0 .M VA
?m
3700uF
ASM
+
M W,M X,PF
2
2
12k V
3 8 5 .M VA
S
Si m u l a ti o n
o p ti o n s
1 4 1 0 .u F
M W,M X,PF
2 5 .5 /6 .6
60 Hz only
Np, Nq
Kp, Kq
2 .2 6 3
+
I/O FIL ES
1
8
1
8
60 Hz only
?m
Fl u o _ l i g h t
9
L a rg e _ i n d
15%
Sm a l l _ i n d
30%
20%
In c a n _ l i g h t
10%
Co l o r_ Tv
5%
9
R2
20%
1560 M W Res.-Com.-Ind. Load
A
B
C
D
E
F
G
H
I
J
K
L
M
A
B
C
D
E
-
Windmill Power Generation
In a weak Power System
1
12 x 2 M VA Doubly-fed
with PWM controller
(Variable Speed)
2
Realistic
Realistic
Realistic
Realistic
Dynamic
F
Wind Data;
DFIG Modeling;
Network & Load Models
Harmonic Distorsions &
Performances
20 MW
1
2
WIND2
P_Gr2
v
scope
Q_Gr_2
scope
Delay
!h
P
11 MW
Np,Nq
Kp,Kq
69/0.69
2
LL-g 6 cycles fault
Va,Vb,Vc
VLOADg1
SW1
+
MW,MX,PF
Q
p2
+
40nF
40nF
5nF
Q
P
DFIG_1
5nF
m1
1
Y gD_2
69/13.8
Weak Local 69 kV
Network (150 MVA)
+
+
+
32Ohm
1uF
scope
Y gD_3
1
+
+ VM
2
C4
C3
MPLOT
?v
1
Y gD_1
69/6.6
4
?m
2
8 MW
SM
6.5 MW
SM1
ASM1
S
in
+
Va,Vb,Vc
ASM
out
MW,MX,PF
AVR_SM1
170uF
?m
5
0.1
1Ohm
13.8kV
10MVA
AVR
6.6kV
5000hp
VLOAD2
Np,Nq
Kp,Kq
5
50/60 Hz
Small Industrial load
I/O FILES
A
3
v
scope
P_Gr1
69/0.69
+
30
p1
+
+
P
+
69kV /_0
4
WIND1
Q_Gr1
100
0.4k
8 MW
Y gD_4
1
?i
5/5.1/0
5/5.1/0
1E15/1E15/0
+
+
+
+
1
P_netw
scope
Q_netw
scope
5 x 2 M VA Doubly-fed
with PWM controller
(Variable Speed)
p3
DFIG_2
Z Dist
4
Q
+
3
50/60 Hz
2
15 MW
B
C
D
E
F
ScopeView Multi-column &
Multi-page capability