Modeling Electrical Systems With EMTP-RV EMTP-RV Package includes: - EMTP-RV, the Engine; - EMTPWorks, the GUI; - ScopeView, the Output Processor. EMTP-RV key features: Reference in transients.
Download ReportTranscript Modeling Electrical Systems With EMTP-RV EMTP-RV Package includes: - EMTP-RV, the Engine; - EMTPWorks, the GUI; - ScopeView, the Output Processor. EMTP-RV key features: Reference in transients.
Modeling Electrical Systems With EMTP-RV EMTP-RV Package includes: - EMTP-RV, the Engine; - EMTPWorks, the GUI; - ScopeView, the Output Processor. EMTP-RV key features: Reference in transients simulation Solution for large networks Provide detailed modeling of the network component including control, linear and non-linear elements Open architecture coding that allows users customization and implementation of sophisticated models New steady-state solution with harmonics New three-phase load-flow Automatic initialization from steady-state solution New capability for solving detailed semiconductor models Simultaneous switching options for power electronics applications EMTP-RV Applications: EMTP-RV is suited to a wide variety of power system studies including and not limited to: Lightning surges Ferroresonance Switching surges Motor starting Temporary overvoltages Steady-State analysis of unbalanced system Insulation coordination Power electronics and FACTS General control system design Power Quality issues Capacitor bank switching Series and shunt resonances Distribution networks and Distributed generation Power system dynamic and load modeling Subsynchronous resonance and shaft stresses Power system protection issues A B C D E F G H EMTP-RV Advanced Practical Applications www.emtp.com 1 1 Tm DPIM1 2 Lightning Strike Near a 765 kV GIS Single-phase Induction Machine 2 + q T eg Speed ?m d + 0.25hp 3 3 765 kV River Crossing with the Special Use of Line Arresters Arc Instability behind Shunt Reactor Breaker Failures Omega_1 Pe Efss MW,MX,PF DEV2 Ef 4 SM1 4 Z Dist DEV9 Va,Vb,Vc SM Variable Static Load Modeling and Machine Dynamics ?m Np,Nq Kp,Kq 60 Hz only Windmill Speed Tm 13.8kV 450MVA MW,MX,PF ASM1 5 Wind Power & Multi-Machine Transient Stability of Large Networks DEV4 S ASM 5 Va,Vb,Vc ASM S Np,Nq Kp,Kq SVC_1 DEV6 6.6kV 11000hp 60 Hz only DEV10 A B C D C E F G L H Simulation Options Load-Flow solution - The electrical network equations are solved using complex phasors. The active (source) devices are only the Load-Flow devices (LF-devices). A load device is used to enter PQ load constraint equations. - Only single (fundamental) frequency solution is achievable in this version. The solution frequency is specified by ‘Default Power Frequency’ and used in passive network lumped model calculations. - The same network used for transient simulations can be used in load-flow analysis. The EMTP Load-Flow solution can work with multiphase and unbalanced networks. - The control system devices are disconnected and not solved. - This simulation option stops and creates a solution file (Load-Flow solution data file). The solution file can be loaded for automatically initializing anyone of the following solution methods. Steady-state solution - The electrical network equations are solved using complex numbers. This option can be used in the stand-alone mode or for initializing the time-domain solution. - A harmonic steady-state solution can be achieved. - The control system devices are disconnected and not solved. - Some nonlinear devices are linearized or disconnected. All devices have a specific steady-state model - The steady-state solution is performed if at least one power source device has a start time (activation time) lower than 0. Simulation Options (Con’t) Time-domain solution - The electrical network and control system equations are solved using a numerical integration technique. - All nonlinear devices are solved simultaneously with network equations. A Newton method is used when nonlinear devices exist. - The solution can optionally start from the steady-state solution for initializing the network variables and achieving quick steady-state conditions in timedomain waveforms. - The steady-state conditions provide the solution for the time-point t=0. The user can also optionally manually initialize state-variables. Frequency scan solution - This option is separate from the two previous options. All source frequencies are varied using the given frequency range and the network steady-state solution is found at each frequency. EMTPWorks features: Object-oriented design fully compatible with Microsoft Windows Powerful and intuitive interface for creating sophisticated Electrical networks Drag and drop device selection approach with simple connectivity methods Both devices and signals are objects with attributes. A drawing canvas is given the ability to create objects and customized attributes Single-phase/three-phase or mixed diagrams are supported Advanced features for creating and maintaining very large to extremely large networks Large number of subnetwork creation options including automatic subnetwork creation and pin positioning. Unlimited subnetwork nesting level Options for creating advanced subnetwork masks Multipage design methods Library maintenance and device updating methods Built-in Libraries: advanced.clf Pseudo Devices.clf RLC branches.clf Work.clf control.clf control devices of TACS.clf control functions.clf control of machies.clf flip flops.clf hvdc.clf lines.clf machines.clf meters.clf meters periodic.clf nonlinear.clf options.clf phasors.clf sources.clf switches.clf symbols.clf transformations.clf transformers.clf Provides a set of advanced power electronic devices Provides special devices, such as page connectors. The port devices are normally created using the menu “Option>Subcircuit>New Port Connector”, they are available in this library for advanced users. Provides a set of RLC type power devices. . This is an empty library accessible to users The list of primitive control devices. This control library is provided for transition from EMTP-V3. It imitates EMTP-V3 TACS functions. Various control system functions. Exciter devices for power system machines. A set of flip-flop functions for control systems. Collection of dc bridge control functions. Documentation is available in the subcircuit. Transmission lines and cables. Rotating machines. Various measurement functions, including sensors for interfacing control device signals with power device signals. Meters for periodic functions. Various nonlinear electrical devices. EMTP Simulation options, plot functions and other data management functions. Control functions for manipulating phasors. Power sources. Switching devices. These are only useful drawing symbols, no pins. Mathematical transformations used in control systems. Power system transformers. Built-in Library of Examples: ScopeView ScopeView is a data acquisition and signal processing software adapted very well for visualisation and analysis of EMTP-RV results. It may be used to simultaneously load, view and process data from applications such as EMTP-RV, MATLAB and Comtrade format files. Multi-source data importation Cursor region information ScopeView (Con’t) Function editor of ScopeView Typical mathematical post-processing Typical Designs: A B C D E F G H I J K L Insulation Coordination of a 765 kV GIS 1 - Backflashover Case - Impulse Footing Resistance of the stricken Tower may be represented by Ri = f(I) - Usage of ZnO model based on IEEE SPD WG - Frequency-Dependant Line modeling 200 kA 3/100 us Lightning Stroke 2 I/O FILES MPLOT foudre_30km_ex2.lin foudre_300m_ex1.lin 2 LINE DATA LIGHTNING_STROKE Network LINE DATA model in: foudre_30km_ex2_rv.pun 765 kV Line Tower_top + VM ?v Air-Insulated Substation Gas-Insulated Substation model in: foudre_300m_ex1_rv.pun Air-Insulated Substation ?v + VM Trans_c ?v SOURCE_NETWORK BUS_NET 735kV /_0 a b + + + + + a b + + c 300 m bushing CB_a + ?v CB_b VM + ?v CB_c VM + + VM 300 m b + 3 ?v a ?v c + VM Trans_a + + + c + 30 km VM 1M + + cond_c VM + ?v + VM Trans_b Open Circuit-Breaker ?v/?v/?v + 3 1 Simulation options + 1M 1M + ?i ?i L10 C3 + + ?i + + + 48 + + + L12 52 m + + + 48 m C2 4nF 52 + + + + C1 4 L11 + ?i + L2 ?i + + To eliminate undesirable reflexions L3 TOWER3 Part=TOWER_model1ohm L1 TOWER2 Part=TOWER_model15_f + TOWER1 Part=TOWER_model15_1 + + 25 m ?i 4 5 5 0.1nF Gas-filled CVT 588 kV Zno Bushing A B C D E F G H 4nF 4nF + 0.1nF 0.1nF Inductive VT I Gas-filled Bushing J Power 588 kV Zno Transformer K L A B C D E F G H 1 1 Field Recording (10-08-1986) Validation of the Secondary Arc M odel with IREQ Laboratory Tests EMTP-RV Simulation (05-22-2005) 2 2 R2 + ?i SW1 + 100ms/200ms/0 + 0.7,13Ohm 1.60uF C2 Secondary arc 300 RL1 + + + 3 1.05uF C3 + 0.2 AC1 + + 66.4kVRMS /_0 0.2 R3 DEV1 3 Sec_ARC_a R1 4 4 Primary Arc: 5 kA eff Secondary Arc: 40 A Wind Speed: 9.7 km/h Secondary Arc Duration: 1.04 sec. 315 kV insulator string, l=2.3 m 5 5 I/O FILES A B C D E F G H O N M L K J I H G F E D C B A P 1 1 Switching of A 420 kV Three-Phase Shunt-Reactor I/O FIL ES State of the art simulation introducing: - A realistic model of a three-phase shunt reactor taking into account the asymetrical couplings of the magnetic circuit; - A realistic circuit-breaker model based on the well-known Cassie - Mayr modified arc equations. 2 3 2 3 4 4 + + 0. 5 1. 6nF 0. 5 + + + 1uH 1uH a BUS24 DEV2 DEV1 Sim plifie d Arc M ode l ba s e d on M a y r's & Ca s s ie s e qua tions Sim plifie d Arc M ode l ba s e d on M a y r's & Ca s s ie s e qua tions 5 a + CB_ARC_a + CB_ARC_a out in out in 0. 375nF BUS23 0. 75nF 1. 6nF + C8 0. 05nF + + R12 + Line + + + + 5 + 0. 5 1. 6nF 0. 5 1. 6nF 0. 75nF 350 1uH 1uH m1 + VM ?v 3000 b + 200k 1. 15nF + + 6 + + + b + 1uH 1uH 4nF C11 1. 15nF ba s e d on M a y r's & Ca s s ie s e qua tions out in out in + Sim plifie d Arc M ode l Sim plifie d Arc M ode l ba s e d on M a y r's & Ca s s ie s e qua tions c + DEV6 DEV5 c 1. 6nF + 0. 75nF 0. 5 1. 6nF + + Line CVT 200k C13 a 4nF + 200nF 405kVRM SLL / _- 30 0. 5 + + AC1 + 6 0. 75nF + C9 0. 05nF 0. 375nF + b CB_ARC_a + CB_ARC_a out c Sim plifie d Arc M ode l ba s e d on M a y r's & Ca s s ie s e qua tions in out in + b 10 20 m DEV4 DEV3 Sim plifie d Arc M ode l ba s e d on M a y r's & Ca s s ie s e qua tions + 25uH + 30m H 0. 8 + + + + a 65 m + R10 + c CB_ARC_a + CB_ARC_a 0. 05nF C10 7 7 Network Substation Double-break 420 kV SF6 C.-B. CT 420 kV Busbar 420 kV Busbar CVT Three-phase 420 kV Shunt-Reactor 8 8 Three-Phase 420 kV 100 MVARS Shunt Reactor F= 0.548 Wb, N=1409 turns, L1=5.617 H For mu (50 Hz) = 0.06 H/m: Xac=Xca= 9 Ohms Xba=Xbc=7 Ohms Xab=14 Ohms Xaa= 1741 Ohms Xbb= 1750 Ohms Xcc=1741 Ohms 9 g = 12 mm 2900 mm For mu (700 Hz) = 0.01 H/m: 2x x x= 710 mm 1 0 9 1 0 Xac=Xca= 54 Ohms Xba=Xbc=42 Ohms Xab=84 Ohms Xaa= 1741 Ohms Xbb= 1750 Ohms Xcc=1741 Ohms A B C D E F G H I J K L M N O P 40 M W M W,M X,PF Ou t a v r_ g o v e rn o r_ p u AVR_ Go v _ 5 Ou t AVR&Gov (pu) IN ?m 1 + CP + SM ?m AVR&Gov (pu) 1 3 .8 k V 2 0 0 M VA 3 80 SM ?i Np, Nq Kp, Kq 80 IN R3 ?m 1 Ou t DEV4 SM 9 1 3 .8 /2 3 0 AVR_ Go v _ 9 5 /5 .1 /0 5 /5 .1 /0 1 E1 5 /1 e 1 5 /0 2 60 Hz only BUS1 290 + 240 M W Yg Yg _ n p 5 60 + 1 Va ,Vb ,Vc 1 2 CP 1 4 4 .8 Z Dist 6 9 /0 .6 9 2 + 2 + Q P p7 s c ope P_ Va r_ s p e e d 3 v AVR&Gov (pu) IN + 9 6 .5 8250 M W + CP 1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0 9000 M W 230k V 1 2 0 0 0 M VA + 2 3 0 /2 6 .4 C1 2 SM 1 0 CP2 0 .2 5 u F ? C8 Q_ Va r_ s p e e d s c ope Kp, Kq + 1 2 3 0 /7 1 0 .2 5 u F Sq Ca g e _ 4 162 M W + CP2 3 x 1M W Doubly-fed with PWM controller (Variable speed) SM ?m 1 0 .1 3 2 .2 Oh m 6 9 /3 .3 Ou t AVR&Gov (pu) IN 2 2 Z Dist M W,M X,PF 45 M W Np, Nq Q Va ,Vb ,Vc DEV1 BUS5 DEV3 + 0 .1 ,0 .5 Oh m 1 3 .8 /2 3 0 BUS7 p6 1 60 Hz only BUS9 2 2 AVR_ Go v _ 1 0 132 M W 60 Hz only P RL 1 0 .2 ,1 Oh m 6 9 /3 .3 1 3 .8 k V 2 0 0 M VA M W,M X,PF + 1 3 .8 /2 3 0 Yg Yg _ n p 4 + ASM S Large Gen.-Load Center SM 5 Va ,Vb ,Vc 1 M Z Dist 0 .0 4 ,0 .2 Oh m 1 1 3 .8 /2 3 0 Qt_ Wi n d Ge n s c ope R4 + + 77 M W WIND IM GENERATION (Constant speed) SM 6 2 0 .1 ,0 .5 Oh m 50 ASM S L Np, Nq Kp, Kq 1 6 9 /3 .3 2 ?m 1 3 .8 k V 5 0 M VA 1 3 .8 k V 5 5 0 M VA VM + 2 K ? v /? v /? v Pt_ wi n d Ge n s c ope 2 ASM S J CP2 + + 6 9 /3 .3 SM Q_ Sta t_ 3 0 s c ope m _ 6 9 k V_ wi n d 1 520 M W SM 7 1 2 ASM S I 1 P p4 Q Sq Ca g e _ 1 4 x (10 X 2 MW) induc. machine pf 0.85 H AVR_ Go v _ 6 +/- 30 MVARS STATCOM 1 G SM F Ou t E DEV6 AVR_ Go v _ 7 D AVR&Gov (pu) C IN B + -1 /1 E1 5 /0 A 50 + CP + 1 v R5 + 1 Z Dist Va ,Vb ,Vc m _ Su b s _ B_ 2 3 0 k V + VM CP2 + 3 2 2 3 2 5 0 0 /2 3 0 /5 0 1 1 3 .8 /2 3 0 SM 8 1 5 0 0 /2 3 0 /5 0 2 x 240 M W AVR_ Go v _ 8 76 M W SM 1 1 3 p2 Q P 1 2 1 + 3 5 0 0 /2 3 0 /5 0 + R1 ?i 1600 M W 240 M X 7 P P_ L o a d s c ope Q_ L o a d s c ope Q + 2000uF p3 pF=88% + + + 1 6 96uF +/- 400 M vars STATCOM in Substation B + 0 .0 5 u F 200 M W P_ Ex c h + 2 3 0 /2 6 .4 0 .0 1 3 0 .2 2 Oh m ? 220 km Se r_ C_ 2 SM 4 0 .3 u F s c ope 96uF Ou t2 + ?m 40% Q_ Ex c h s c ope + 1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0 1 E1 5 /1 E1 5 /0 SM IN AVR&Gov (pu) ?v 15uF 2 140 km + 3 Ou t1 In 2 + Ou t VM Su b s ta ti o n _ C Su b s ta ti o n _ B Ou t2 140 km 2 SM 3 In 1 Ou t1 Su b s ta ti o n _ A In 2 ?m AVR_ Go v _ 4 + 1 + Se r_ C_ 1 In 1 SM 2 SM IN AVR&Gov (pu) 7 + 3 SM IN AVR&Gov (pu) Ou t m _Load_230k V 5 0 0 /2 3 0 /5 0 2 220 km -1 /1 E1 5 /0 ?m AVR_ Go v _ 2 AVR_ Go v _ 3 40% + Ou t 280 km 1 + 2 + 5 0 0 /1 3 .8 /1 3 .8 + ?m SM P p1 s c ope Qt Q Ou t IN AVR&Gov (pu) s c ope Pt 1 3 .8 k V 4 0 0 M VA 6 110 5 1 ?m 1300 M W L +/- 150 M X SVC 48uF + SM AVR_ Go v _ 1 C 60 Hz only 48uF Ou t Np, Nq Kp, Kq 900 M W ? v /? v /? v 1 3 .8 k V 1 2 5 M VA AVR&Gov (pu) IN Z Dist DEV5 M W,M X,PF Np, Nq Kp, Kq Va ,Vb ,Vc SW6 + -1 /1 E1 5 /0 60 Hz only DEV2 5 4 M W,M X,PF CP 6 9 /2 2 5 SVC_ 1 2 180 M W 1 9 3 .1 ?i 4 2 5 .5 /1 2 ASM + Va ,Vb ,Vc Va ,Vb ,Vc Np, Nq Kp, Kq M W,M X,PF 60 Hz only Va ,Vb ,Vc Np, Nq Kp, Kq S 6 .6 k V 7 7 0 .M VA ?m 3700uF ASM + M W,M X,PF 2 2 12k V 3 8 5 .M VA S Si m u l a ti o n o p ti o n s 1 4 1 0 .u F M W,M X,PF 2 5 .5 /6 .6 60 Hz only Np, Nq Kp, Kq 2 .2 6 3 + I/O FIL ES 1 8 1 8 60 Hz only ?m Fl u o _ l i g h t 9 L a rg e _ i n d 15% Sm a l l _ i n d 30% 20% In c a n _ l i g h t 10% Co l o r_ Tv 5% 9 R2 20% 1560 M W Res.-Com.-Ind. Load A B C D E F G H I J K L M A B C D E - Windmill Power Generation In a weak Power System 1 12 x 2 M VA Doubly-fed with PWM controller (Variable Speed) 2 Realistic Realistic Realistic Realistic Dynamic F Wind Data; DFIG Modeling; Network & Load Models Harmonic Distorsions & Performances 20 MW 1 2 WIND2 P_Gr2 v scope Q_Gr_2 scope Delay !h P 11 MW Np,Nq Kp,Kq 69/0.69 2 LL-g 6 cycles fault Va,Vb,Vc VLOADg1 SW1 + MW,MX,PF Q p2 + 40nF 40nF 5nF Q P DFIG_1 5nF m1 1 Y gD_2 69/13.8 Weak Local 69 kV Network (150 MVA) + + + 32Ohm 1uF scope Y gD_3 1 + + VM 2 C4 C3 MPLOT ?v 1 Y gD_1 69/6.6 4 ?m 2 8 MW SM 6.5 MW SM1 ASM1 S in + Va,Vb,Vc ASM out MW,MX,PF AVR_SM1 170uF ?m 5 0.1 1Ohm 13.8kV 10MVA AVR 6.6kV 5000hp VLOAD2 Np,Nq Kp,Kq 5 50/60 Hz Small Industrial load I/O FILES A 3 v scope P_Gr1 69/0.69 + 30 p1 + + P + 69kV /_0 4 WIND1 Q_Gr1 100 0.4k 8 MW Y gD_4 1 ?i 5/5.1/0 5/5.1/0 1E15/1E15/0 + + + + 1 P_netw scope Q_netw scope 5 x 2 M VA Doubly-fed with PWM controller (Variable Speed) p3 DFIG_2 Z Dist 4 Q + 3 50/60 Hz 2 15 MW B C D E F ScopeView Multi-column & Multi-page capability