Transcript 可微分與切平面
第二十七單元 切平面 Tangent Lines The equation of the tangent line at x=a is ( y - f (a) ) = f ¢(a)( x - a) Tangent Planes Differentiability (One Variable) One Variable Case y= x f is continuous at x0 f ( x0 + D x) - f ( x0 ) f+¢( x0 ) = lim+ D x® 0 Dx f ( x0 + D x) - f ( x0 ) f- ¢( x0 ) = limD x® 0 Dx y = x is not differentiable at x = 0 Differentiability Two Variable Case ìïï 1 , f ( x, y) = í ïïî 0 , x> 0 , y> 0 otherwise f (0 + D x, 0) - f (0, 0) f x (0, 0) = lim =0 D x® 0 Dx f (0 , 0 + D y) - f (0, 0) f y (0, 0) = lim =0 D y® 0 Dy f is not continuous at (0,0) Along x = y (in the first quadrant) Differentiability lim ( x , y )® (0,0) f ( x, y ) = 1 Along x = 0 lim ( x , y )® (0,0) f ( x, y ) = 0 The existence of f x and f y is not guarantee f is differentiable Sufficient Condition for differentiability Theorem : Let f be a function of two variables, if f , f x , f y are continuous in a disk centered at ( x0 , y0 ), then f is differentiable at ( x0 , y0 ) f All of us are continuous fx fy D ( x0 , y0 ) Example Show that f ( x, y) = x 2 y 2 + xy 3 is differentiable for all ( x, y ) Solution : ¶ 2 2 f x ( x, y ) = ( x y + xy 3 ) = 2 xy 2 + y 3 ¶x ¶ 2 f y ( x, y ) = ( x y + xy 3 ) = x 2 + 3xy 2 ¶y Q f , f x , f y are continuous for all ( x, y) \ f is differentiable for all ( x, y) Example x x ax d d x= Þ ax = a = dx x dx x x Show that f ( x, y) = xy is not differentiable at point (0,0) Solution : yx f x = xy x = x not continuous in the disk centered at (0,0) Graph of f (x) The Direction Vector The direction vector is 1 , 0 , f x (a, b) The Direction Vector The direction vector is 0 , 1 , f y ( a, b) Normal Vector v a = 1 , 0 , f x (a, b) v b= 0 , 1 , f y ( a, b) Normal Vector v v = a´ b The Normal Vector of a Tangent Plane v v a = 1 , 0 , f x ( a, b) , b = 0 , 1 , f y ( a, b) 1 0 fx 1 0 fx 0 1 fy 0 1 fy < - fx , - f y , 1 > Theorem Z=f (x ,y) < f x , f y , - 1> Example Find the equation of the tangent plane to 2 2 z = 6 - x - y at the point (1 , 2 ,1) Solution : v N = < - 2 x, - 2 y , - 1 > (1,2,1) = < - 2, - 4, - 1 > Plane Equation: < - 2, - 4, - 1 > ×< x - 1, y - 2, z - 1 > = 0 - 2( x - 1) - 4( y - 2) - ( z - 1) = 0 Example(continued) f ( x, y) = 6 - x2 - y 2 (1, 2,1) Tangent plane to the level surface Suppose S is a surface with F ( x, y, z) = k that is, level surface of 3 variables uv v ÑF Suppose r (t ) = < x(t ), y(t ), z(t ) > F ( x(t ), y(t ), z (t )) = k ¶ F dx ¶ F dy ¶ F dz + + =0 ¶ x dt ¶ y dt ¶ z dt dx dy dz ¶F ¶F ¶F ,, , =0 , , × dt dt dt ¶x ¶y ¶z P( x0 , y0 , z0 ) Tangent Plane dx dy dz ¶F ¶F ¶F ,, , =0 , , × dt dt dt ¶x ¶y ¶z uv ÑF uv v Ñ F ×r ¢(t ) = 0 uv v¢ Ñ F ( x0 , y0 , z0 ) ×r (t0 ) = 0 uv \ Ñ F ( x0 , y0 , z0 ) ^ any curve passing through P Example Find the equation of the tangent plane and normal x2 y 2 z 2 line to the ellipsoid + + =3 4 1 9 at the point (- 2 ,1 , - 3) Solution : 2 2 2 x y z F ( x, y , z ) = + + 4 1 9 x Fx ( x, y, z ) = Fy ( x, y, z) = 2 y 2 2z Fz ( x, y , z ) = 9 x Fx ( x, y, z ) = Fy ( x, y, z) = 2 y 2 Fx (- 2,1, - 3) = - 1 Example Fy (- 2,1, - 3) = 2 Fz (- 2,1, - 3) = - 2/ 3 2z Fz ( x, y , z ) = 9 < - 1, 2 , - 2 / 3 > P(- 2,1, - 3) 2 - 1 ( x + 2) + 2 ( y - 1) - ( z + 3) = 0 3 graph 單元結語 單變數函數可微分的條件微左導數=右導數, 以幾何的角度來看,就是存在一條非鉛直 的切線。 雙變數函數可微分的條件就比較複雜了, 在此我們提出了可微分的充分條件,以幾 何的角度來看,就是切平面的存在性。 1 2 3 4