Transcript 6 ka BP

Drift of solar constants for the Earth (1),
Venus (2) and Marc (3) due to increasing
of Sun’s luminosity.
4101
1
2
3
4
5
W/m
2
2734
1367
0
0
1
2
3
4
5
6
109 years
Within an interval formed by carves 4 and 5 the Earth’s type of climate
is not principally varied.
Variation of СО2 concentration in the
atmosphere
3000
ppmv
2000
1000
0
0
400
200
300
400
500
Ma, before present
1
2
3
4
5
300
250
200
360
345
ppm v
350
ppmv
100
330
1
315
2
300
150
1950
1
10
100
1000
10000
100000
years from 1980 to past (logarithmical scale)
1000000
1960
1970
ye ars
1980
1990
600
temperature deviation
from present-day
Temperature deviation from today’s value
15
10
5
0
-5
-10
-15
1
2
0
200
400
600
6
10 years BP
1 – calculation [Budyko et al., 1985]
2 – interpretation of proxy indicators
[Frakes, 1979]
Variation of СО2 concentration in the
atmosphere
3000
ppmv
2000
1000
0
0
400
200
300
400
500
Ma, before present
1
2
3
4
5
300
250
200
360
345
ppm v
350
ppmv
100
330
1
315
2
300
150
1950
1
10
100
1000
10000
100000
years from 1980 to past (logarithmical scale)
1000000
1960
1970
ye ars
1980
1990
600
Measured concentration of 18 O in surface
planktonies [Imbrie et al., 1984]
1
5e
5d
2
1, 2, 5e,
5d, 6
are
some
isotopic
stages
6
Changes of temperature in north western
part of Russian Plane (0C) [Klimanov, 1996.]
July
January
Year
AT
YD
Al
YD – Younger Dryas, Al – Allered, AT – Atlantic warm event
1500
1600
1700
1800
1900
2000
Northern summer
temperature changes (0С)
[Bradley, Jones, 1993]
0
С
years
0
-0,2
-0,4
-0,6
-0,8
-1
-1,2
1500
length of gletchers,
km
С
0
0,2
0,1
0
-0,1
-0,2
-0,3
1400
Temperature changes
(0С), based on
measurements in
holes
1600
-2
1
2
3
-3
1500
1600
-1
1800
1900
2000
years
1
0
1700
1700
1800
years
1900
Changes of Alpian
glacier’s length
[Oerlemans, 1994]
Glaciers: 1 – Untere
Grindelwaldgletscher,
2 – Rhonegletscher, 3 –
2000
Glacier d’Argentiere
Climate dynamics and insolation change
during last 140 тыс. лет
18O
Insolation at the top
of the atmosphere
summer
103 years BP
winter
eccentricity
obliquity
precession
Parameters of the Earth’s orbit
Latitude-month distribution of the
difference in insolation (W/m2) between 21
and 6 ka and the present
21 ka BP
6 ka BP
Equation of the general
circulation model (GCM)
dX/dt=F, X=X(0)
du
dt
(f 
u
r
tg  ) v 
1
r cos 
(



RT  p s
p s 
dq
)  Fu
dt
1 
RT  p s
 ( f  tg  ) u  (

)  Fv
dt
r
r 
p s 
dv
p s
t
u

1
r cos 
(
p s u


 p s v cos 

)
 p s 

0
 E  C  Fq
p s
t
d
dt



t
  p s u  p s v cos  
 d   0


r cos  0   



p s
p s

u
v p s 




)   FT  
 p s   (
dt
c p p s 
t
r cos   
r  
dT


RT

RT

1
1
u

r cos   

v 
r 
 


Global surface air temperature 21 ka
BP-control from different GCMs
year
jja
djf
-6
Simulations forced
by CLIMAP SSTs
ukmo
ugamp
mri2
lmcelmd4
year gfdl
jja gen2
djf gen1
ccm1
ссс2.0
-5
-4
0
C
-3
Simulations with
atmosphere-mixed
layer ocean model
-2
-1
-6
ugamp
msu
mri2
lmcelmd5
lmcelmd4
gen2
echam3
ccsr1
ссс2.0
0
-5
-4
0
C
-3
-2
-1
0
Mean annual temperature anomalies (LGM
minus modern) averaged by PMIP models
0
50
-4
-8
0
-12
-16
-50
-20
50
-150
-100
-50
0
50
-24
100
150
0
Модельные
отклонения
температуры
(K) воздуха у поверхности
Sites where
LGM
temperatures
Земли 21000 лет назад от современных значений
have been (reconstructed
для среднегодовых условий )
-5 0
-1 5 0
-1 0 0
-5 0
0
50
100
150
Comparison between reconstructed and
simulated mean annual temperatures
anomalies (LGM minus modern) over the
land for all available sites
-20
-15
-10
data of reconstruction
-25
-5
0
0
-5
-10
-15
-20
-25
model
-25
-20
-15
-10
-5
0
0
data of reconstruction
Comparison between
reconstructed and simulated
mean annual temperatures
anomalies (LGM minus
modern) over the land for
the sites from the areas with
simple topography and
environments
-5
-10
-15
-20
-25
model
1 – Western Europe and North Africa
2 - East European Plane
3 – North-East North America
4 – West Siberian Plane
5 – Eastern Siberia and Chukotka
6 – Greenland
7 – Antarctica
8 – Mongolia and North China
9 – Brazil
10 – South Africa
11 – Australia
1
2
3
4
5
6
7
8
9
10
11
Comparison between reconstructed and
simulated mean annual temperatures
anomalies (LGM minus modern) over the
land averaged by the regions pointed in the
legend
-20
-15
-10
-5
0
0
data of reconstruction
-25
-5
-10
-15
-20
-25
model
1
2
3
4
5
6
7
8
9
10
11
1 – Western Europe (9) and North Africa (1)
2 - East European Plane (5)
3 – North-East North America (4)
4 – West Siberian Plane (10)
5 – Eastern Siberia and Chukotka (6)
6 – Greenland (1)
7 – Antarctica (1)
8 – Mongolia (2) and North China (2)
9 – Brazil (1)
10 – South Africa (2)
11 – Australia (1)
50
0
-50
-15 0
-1 00
-50
0
80
60
17
21 22
16 5 18
23
25
620
4
1924
2
1514
40
7
8
27
3
10
13
1112
26
9
1
20
20
40
60
80
100
120
140
160
50
1 00
1 50
Mean annual
precipitation
Рис. 4. Среднегодовые
аномалии осадков
anomalies
(LGM
(мм/сут), 21000 лет назад (верхняя панель),
слева - местоположение точек, где брались
minus
modern)по осадкам
данные палеореконструкций
averaged by PMIP
models
Latitude-month distribution of the
difference in insolation (W/m2) between 21
and 6 ka and the present
21 ka BP
6 ka BP
PMIP-model averaged temperature
anomalies (0С) and anomalies of
precipitation (mm/day) 6 ka BP
(june, july, august)
Relationship between precipitation changes
over northern India and changes of surface air
temperature over central Asia
precipitation (70-100E; 20-40N), mm/day
models
3
bmrc
ссс2.0
ccm1
ccsr1
cnrm2
2
csiro
echam3
gen2
gfdl
1
giss
lmcelmd4
lmcelmd5
mri2
msu
0
ugamp
0
1
2
air temperature (40-150E; 30-60N),
3
0
C
uiuc11
ukmo
yonu
Temperature (0C) and precipitation (mm/day)
anomalies for July, 6-0 ka BP
Simulated and recorded
temperature anomalies over
land
3
2
model,0С
1
-5
-3
0
-1 -1
-2
-3
-4
-5
-6
-7
recorded data, 0С
MSU model
1
3
Changes in zonal annual mean precipitation
averaged over Northern Africa (6 – 0 ka BP,
PMIP results)
Max and
min bounds
for the
excess
precipitation
to support
grassland
Changes in zonal annual mean precipitation
averaged over Northern Africa (6 – 0 ka BP,
PMIP results) and impact of ocean feedback
Coupled atmosphere-ocean simulation
Changes of temperature in north western
part of Russian Plane (0C) [Klimanov, 1996.]
July
January
Year
AT
YD
Al
YD – Younger Dryas, Al – Allered, AT – Atlantic warm event
Scheme of glaciation of the North
America during the Younger Dryase and
routes of meltwater discharge
Time series of the deviation of salinity, sea
surface temperature (0C) and ice (sm) from
their initial values in the Denmark Strait
(1250-year time
integration of GFDL
model)
Response of the thermochaline
circulation of the North Atlantic
to fresh water input to its
northern part (1) and Caribean
region (2)
25
20
Sv
Fresh water
input to the
northern North
Atlantic
1
2
15
10
5
0
0
250 500 750 1000 1250
годы численного
Measured concentration of 18 O in surface
planktonies [Imbrie et al., 1984]
1
5e
5d
2
1, 2, 5e,
5d, 6
are
some
isotopic
stages
6
S ~ f
White
noice
2
Red
noice
Milankovitch cycles
Red
noice
Red
noice
Red
noice
Oscillator for global climate change
dT/dt=T(t)+v
=1 + 2 + 3 …
 ( ) ( )  с  (   )
dT
dt
dT 
dt 
 T  T
3
 denotes the delta-function
Scaling time and T
1
t   t
3
 T   T    T ( t   )  
T T

dT 

dt 
3
TT
 is the nondimensional delay, 
measures the influence of the
returning signal
Linear stability analysis
T0-T0-T0 3=0

T0=0, (1-)1/2
The neutral curve: 
y=T-T0
dy
 0
r
dt
 3  2  y   y ( t   )
Perturbation from the
stationary solution
0.5
y ~ exp  t ,    r  i  i
 r  3  2    cos  i   exp    r  
0
 i   sin  i   exp    r 

5
10
Normalized temperature fluctuations
0.5,2
ka, BP
0
1
-3
-2,5
0,5
-2
-1,5
-1
18
 О
0
-0,5 0
10
20
30
40
-0,5
0
0,5
1
-1
1,5
2
*10 ka

100
200
300
400
500