Transcript ppsx

Circumbinary Planets
PLATO WP 112510
Photometric detection of circumbinary planets
Hans Deeg (coordinator)
José Manuel Almenara
Stefan Dreizler
Rudolf Dvorak
Francesca Faedi
Sascha Grziwa
Nicolas Iro
Petr Kabath
Peter Klagyivik
Maciej Konacki
Willy Kley
Tsevi Mazeh
Aviv Ofir
Jean Schneider
Inst. Astrofísica Canarias, ES
LAM, FR
University of Goettingen, DE
Univ. Vienna, AT
Warwick University, GB
Univ. Köln, DE
Univ. Hamburg, DE
ESO fellow, Chile
Inst. Astrofísica Canarias, ES
Nicolaus Copernicus Astron. Ctr., Torun, PL
Univ. Tübingen, DE
Tel Aviv University, IS
University of Göttingen, DE
Observatoire de Paris, FR
status Nov. 2014
PLATO 2.0 WS
Nº1
Circumbinary Planets
Definition: Planet(s) in orbit around both binary components (P-type orbit)
Star Wars 1977: Planet Tatooine
Backer 1993: Timing of PSR B1620-26: Pulsar-WD binary plus low-mass object = planet?
Only 10-12 yrs later accepted as CBP, 2.5Mjup, P=100y (Sigurðsson+03, Backer+ 05, Rasio 05 etc)
MacCabe et al 2003: HST-NICMOS obs of Circumbinary disk of GG
PLATO 2.0 WS
Nº2
Known CBPs
Name
NASA Exoplanet Explorer, circumbinary flag =1
Disc. meth.
Period
Planet
Semi-maj.
ax.
(AU)
Binary
Mass
(Mjup)
Radius
(Rjup)
1.22
Period
(d)
Tot. Mass
(Msun)
V mag
0.61
9.72
1.07
13.3
HIP 63510 c
Imaging
> 40000 y
1168
13±7
SR 12 AB c
Imaging
> 45000 y
1300
13±7
23
2.5±1
191.4
1.95
21.3
PSR B1620-26 b
Pulsar Timing
~ 100 y
DP Leo b
Eclipse Timing
28 y
8.19
6.05±0.5
0.1
0.70
17.5
NY Vir c
Eclipse Timing
27 y
7.54
4.49/sini
0.1
0.60
13.3
UZ For b
Eclipse Timing
16 y
5.9
6.3±1.5/sini
0.1
0.84
18.2
NN Ser c
Eclipse Timing
15.3 y
5.35
7.33±0.31/sini
0.1
0.65
16.7
RR Cae b
Eclipse Timing
11.9 y
5.3
4.2±0.4/sini
0.3
0.62
14.4
NY Vir b
Eclipse Timing
8.2 y
3.39
2.78±0.19/sini
0.1
0.60
13.3
NN Ser d
Eclipse Timing
7.9 y
3.43
2.3±0.5/sini
0.1
0.65
16.7
UZ For c
Eclipse Timing
5.2 y
2.8
7.7±1.2/sini
0.1
0.84
18.2
HD 202206 c
Radial Velocity
3.8 y
2.542
2.43/sini
255.9
1.17
8.08
Kepler-47 c
Transit
303.1 d
0.991
< 28
0.41
7.4
1.41
15.5
Kepler-34 b
Transit
288.8 d
1.0896
0.22±0.01
0.76
27.8
2.07
15
Kepler-3151 b
Transit
240.5 d
0.7877
< 0.05
0.55
27.3
1.13
13.5
Kepler-16 b
Transit
228.8 d
0.7048
0.333±0.016
0.75
41.1
0.85
12.0
Kepler-64 (PH1) b
Transit
138.3 d
0.652
< 0.53
0.55
20.0
1.94
13.5
Kepler-35 b
Transit
131.5 d
0.60347
0.127±0.02
0.73
20.7
1.70
16.0
Kepler-38 b
Transit
105.6 d
0.4632
< 0.38
0.38
18.8
1.20
14.3
Kepler-413 b
Transit
66.3 d
0.3553
0.21±0.07
0.39
10.1
1.36
15.6
Kepler-47 b
Transit
49.5 d
0.2962
<2
0.27
7.4
1.41
15.5
Sources: Nasa exoplanet explorer, exoplanet.eu, and orig. lit.
PLATO 2.0 WS
Distinct populations pending on discovery method
Direct
Imaging
P >~ 40k yr
100000
Planet Period vs Binary Period
Pulsar
Timing
100 yr Eclipe
Planet period (d)
10000 Timing
RV
Transits
1000
100
10
0.01
0.1
1
10
Binary period (d)
PLATO 2.0 WS
100
1000
Stability of P-type planet orbits
H&W 99
P°
ac
unstable
M2
ab
M1
Dvorak+ 89
stable
ab: Binary separation
ac: planet minimum stable semimaj. axes
m=M2/M1+M2
Holman & Wigert 99
Dvorak+ 1989, Holman & Wiegert 1999, coplanar case:
ac/ab ~ 2.3 for ebin=0 , little dependency on μ
Pc/Pb ~ 3.5
Non coplanar: ac varies by ±20% against coplanar case ?
(on a-Cen, Wiegert & Holman 97, Chambers+ 02)
Possible regions of instabilities further out: at MMR's 3:1 up to (?) 9:1
PLATO 2.0 WS
Distinct populations pending on discovery method
Direct
Imaging
P >~ 40k yr
100000
Planet Period vs Binary Period
Pulsar
Timing
100 yr Eclipe
Planet period (d)
10000 Timing
RV
Transits
1000
Instable
CBP orbits
100
10
0.01
0.1
1
10
Binary period (d)
PLATO 2.0 WS
100
1000
CBPs discovered by timing
Name
PSR B1620-26 b
DP Leo b
NY Vir c
UZ For b
NN Ser c
RR Cae b
NY Vir b
NN Ser d
UZ For c
Disc. meth.
Pulsar Timing
Eclipse
Timing
Eclipse
Timing
Eclipse
Timing
Eclipse
Timing
Eclipse
Timing
Eclipse
Timing
Eclipse
Timing
Eclipse
Timing
Orb. period
100 y
Planet
Semi-maj.
ax.
(AU)
23
Binary
Mass
(Mjup)
2.5±1
Radius
(Rjup)
Period
(d)
191.4
Tot. Mass
(Msun)
1.95
V mag
21.3
28 y
8.19
6.05±0.5
0.1
0.70
17.5
27 y
7.54
4.49/sini
0.1
0.60
13.3
16 y
5.9
6.3±1.5/sini
0.1
0.84
18.2
15.3 y
5.35
7.33±0.31/sin
i
0.1
0.65
16.7
11.9 y
5.3
4.2±0.4/sini
0.3
0.62
14.4
8.2 y
3.39
2.78±0.19/sin
i
0.1
0.60
13.3
NY 7.9
Viry
Lee+ 14
3.43
5.2 y
2.8
Beuermann+
2010
Eclipse time variation (ETV) <- light-time or Rømer effect
2.3±0.5/sini
0.1
0.65
16.7
(Not
TTV-like orbital dynamics
effect):
EB7.7±1.2/sini
is closer or further from
us pending
on18.2
location of planet.
0.1
0.84
All timing discoveries:
On evolved stars with compact component:
Pulsars, ecl. binaries dM /WD; dM/sdB.
(~2500 WD/MS EB’s, most from SDSS, Rebassa-Mansergas + 12)
sdB pulsations could confirm ETVs (Lee+ 14, for NY Vir)
PLATO 2.0 WS
ETV detections
ETV detections: Post common envelope binaries, evolved from MS binaries with P ~ O(1) yr.
Open questions:
- Planets or other origins for ETVs? (Horner+ 14)
- some 2-planet candidate-sys not stable ( HW Vir, QS Vir)
-> there must be other source of ETVs
- current orbit stable (NN Ser)
- IF planet:
- first generation? Formed with MS binary (e.g. Bear & Soker 14)
- second generation? Formed from ejecta during CE phase (e.g. Horner+ 14; Schleicher & Dreizler 14 )
likely unstable
likely stable
from Horner+ 14
HW Vir
PLATO 2.0 WS
QS Vir
NN Ser
RV detections
TATOOINE Search (Konacki+ 2009): No reported discovery
Problem: RV amplitude of stellar binary components >> RV from planet
One potential CBP (Correia+ 2004):
Planet
Name
HD 202206 c
Disc. meth.
Radial Velocity
Orb. period
3.8 y
Binary
Semi-maj. ax.
(AU)
Mass
(Mjup)
2.542
2.43/sini
Radius
(Rjup)
Period
(d)
Tot. Mass
(Msun)
V mag
255.9
1.17
8.08
A comp: 1.15 M
B comp: 17 MJup/sin i : IF BD -> c is CBP, else not
!
No RV wobble detected from any other known CBP.
PLATO 2.0 WS
y
CBP detection by transit
•
•
•
Transits likely to occur on EBs if planet
disks preferentially aligned with binary
planeKepler 16(AB)b
Kepler 16b
Unique transit signal, low False Alarm
prob. Details of transit depend on EB
phase.
x
First transit-detection project ‘TEP’ in 1994
observ. of CM Dra (M4/M4 EB, Deeg+98,
Doyle+2000, Deeg +08)
Specific detection algorithms needed:
(Doyle+ 2000, Ofir+ 2009, Kostov+ 2013)
•
•
Removal of binary signal
Detection of semi-periodic transits
within ‘transit window’ (Doyle+ 2000,
Armstrong+ 13)
Kepler38b
x- elongation
(Rsol)
dF/F
(mmag)
Doyle + 2011
(Orosz+ 12)
Binary phase
PLATO 2.0 WS
Deeg+ 1998
Transiting CBPs with ETVs from orb. dyn. effects
Kepler 16
(Doyle +11)
PLATO 2.0 WS
Kepler 34
Kepler 35
(Welsh +11)
CBP transit detections
Planet
Name
Disc. meth.
Orb. period
Kepler-47 c
Transit
Kepler-34 b
Binary
Semi-maj. ax.
(AU)
Mass
(Mjup)
Radius
(Rjup)
Period
(d)
Tot. Mass
(Msun)
V mag
303.1 d
0.991
< 28
0.41
7.4
1.41
15.5
Transit
288.8 d
1.0896
0.22±0.01
0.76
27.8
2.07
15
Kepler-3151 b
Transit
240.5 d
0.7877
< 0.05
0.55
27.3
1.13
13.5
Kepler-16 b
Transit
228.8 d
0.7048
0.333±0.016
0.75
41.1
0.85
12.0
Kepler-64 (PH1) b
Transit
138.3 d
0.652
< 0.53
0.55
20.0
1.94
13.5
Kepler-35 b
Transit
131.5 d
0.60347
0.127±0.02
0.73
20.7
1.70
16.0
Kepler-38 b
Transit
105.6 d
0.4632
< 0.38
0.38
18.8
1.20
14.3
Kepler-413 b
Transit
66.3 d
0.3553
0.21±0.07
0.39
10.1
1.36
15.6
Kepler-47 b
Transit
49.5 d
0.2962
<2
0.27
7.4
1.41
15.5
Features:
Periods of (inner) planets close to stability limit.
All planets around binaries with > 7d period.
Planets are all Uranus – Saturn like
PLATO 2.0 WS
CBP orbits
Winn&Fabrycky 2014
PLATO 2.0 WS
Period distribution of Kepler EBs, sys with CBPs
morph > 0.5 (contact, semi-det.)
morph ≤ 0.5 (detached)
K47
K413
K34
K3151
K35
K64
K47
K16
+ 235 EBs with P>50d
Source: Kepler EB catalog, V3beta Nov’14
http://keplerebs.villanova.edu/
PLATO 2.0 WS
Radius - period relation of the inner CBPs
Transi ng CBP Radius vs Period
0.8
K 35b
0.7
K 16b
K 34b
Radius (Rjup)
0.6
K 64b
0.5
K 3151b
0.4
K 413b
K 47c
K 38b
0.3
K 47b
0.2
0
50
Source: Exoplanet.eu
PLATO 2.0
100
150
200
Planet period (d)
250
300
350
Insolation of CBPs and habiltity
K34b
Welsh + 2012
K35b
Short-term (yr)
Long-term (yr)
Kep-64b
Welsh+ 2013
PLATO 2.0 WS
CBP transits may come and go: Mutually inclined orbits
Martin & Triaud 2014
PLATO 2.0 WS
Kepler 3151b (KIC 9632899b)
Welsh+ 2014:
Mutual inclination 2.3deg:
-> precession 103yr period
-> transits only 8.4% ± 0.2% of the time
-> 12x more such systems than
currently are transiting
Kepler 413b (Kostov+14)
Pprec ~11yr
Last transit Oct. 2012, next May 2020
Welsh+ 2014
PLATO 2.0 WS
An interesting perspective:
Martin & Triaud (2014): CBP transiting non-eclipsing binaries (NEB)
transitability : present of transits may potentially occur
PLATO 2.0 WS
CBP on non-eclising binaries
: Potential of transits pending on binary inclination
Martin & Triaud 2014
PLATO 2.0 WS
CBP on non-eclising binaries
High probabilities to detect some
- if waiting long enough
- if strongly inclined systems exist
Martin & Triaud 2014
Martin & Triaud 2014
PLATO 2.0 WS
Eclipse Echos
Detection of binary eclipses in planet’s
reflected light. Deeg & Doyle 2011
eclipse in reflected light from planet
‘Works’ on eclipsing or non-eclipsing binaries
PLATO 2.0 WS
Nº22
PLATO CBP detection
~2600 EBs out of Kepler sample of ~160k stars -> ~1.5% are EBs
(Kepler Eclipsing Binary Catalogue V3 (Villanova U.; Kirk+ in prep)
•
•
•
10 CBP detected, all by transits, rather long periods 50-303d
Absence of CBP on shorter-periodic binaries? Likely but not proven
Several detection efforts to find shallow-transit CBPs still ongoing (Also in CoRoT data, Klagyivik & Deeg, in prep)
PLATO:
Long Duration fields, 2-3 yrs: ~ 267k stars 80ppm/√h
First order, multiply Kepler detection rates by 1.66 -> 15-20 ‘Kepler-like’ CBP
Step & Stare, 2-5 months: 106 stars
Reduced detection capability for longer-periodic (p>0.2yr) CBPs.
Assuming that ½ of known Kepler CBP detected in such data: -> 20-40 CBP
PLATO 2.0 WS
Issues for PLATO from CBP detection
PLATO Input catalogue for Long Fields:
Should contain all binaries (eclips. / non-eclips) with P ≤ 1yr
(Halbwachs+ 2003: 13.5% of MS stars, 1d < P < 10yr)
GAIA RV’s -> detect binaries
Pre-launch photometric monitoring -> EBs (needed?)
The case of non-eclipsing binaries: -> potential to be determined
ETV detections? <- Better time-resolution (25s <-> 50s) useful?
(Deeg & Tingley, in prep: No timing-precision gain as long as ≥2 pts in in/egress)
Both cases: dependent on duration of long monitoring phase, 2 x 3yr <-> 1 x 6yr
CBP detection algorithm for PDC <-> independent work on L1 data
PLATO 2.0 WS
Thank you
¡Gracias!
PLATO 2.0 WS
Nº26
PLATO 2.0 WS
PLATO 2.0 WS