Transcript PPT - KAUST

Angle-domain Wave-equation
Reflection Traveltime Inversion
1
2
Sanzong Zhang, Yi Luo and Gerard Schuster
(1) KAUST, (2) Aramco
1
Outline




Introduction
Theory and method
Numerical examples
Conclusions
Outline




Introduction
Theory and method
Numerical examples
Conclusions
Velocity Inversion Methods
Data space
(Tomography)
Ray-based tomography
Wave-equ. Reflection
traveltime inversion
Full Waveform inversion
Inversion
Image space
(MVA)
Ray-based MVA
Wave-equ. Reflection
traveltime inversion
Wave-equ. MVA
Problem
 The waveform (image) residual is highly nonlinear
with respect to velocity change.
2
e=
-
∆𝜏
Pred. data – Obs. data
∆𝜏
Model Parameter
 The traveltime misfit function enjoys a somewhat
linear relationship with velocity change.
Angle-domain Wave-equation
Reflection Traveltime Inversion
 Traveltime inversion without high-frequency
approximation
 Misfit function somewhat linear with respect
to velocity perturbation.
 Wave-equation inversion less sensitive to
amplitude
 Multi-arrival traveltime inversion
 Beam-based reflection traveltime inversion
Outline




Introduction
Theory and method
Numerical examples
Conclusions
Wave-equation Transmission
Traveltime Inversion
1). Observed data 𝑝𝑜𝑏𝑠
0
Time (s)
5
2). Calculated data 𝑝𝑐𝑎𝑙𝑐
0
Time (s)
5
3). 𝑝𝑜𝑏𝑠
-1.5

0
Lag time (s)
𝑝𝑐𝑎𝑙𝑐
∆𝜏
1.5
4). Smear time delay ∆𝜏
along wavepath
Angle-domain Wave-equation
Reflection Traveltime Inversion
Suboffset-domain crosscorrelation function :
𝑓 𝑥, 𝑧, ℎ, 𝜏 =
𝑑x𝑠 𝑝𝑓 (𝑥 − ℎ, 𝑧, 𝑡 + 𝜏|x𝑠 )𝑝𝑏 (𝑥 + ℎ, 𝑧, 𝑡|x𝑠 )𝑑𝑡
s
𝑝𝑓 (𝑥 − ℎ, 𝑧, 𝑡|x𝑠 )
ℎ: 𝑠𝑢𝑏𝑜𝑓𝑓𝑠𝑒𝑡
𝜏: time shift
g
𝑝𝑏 (𝑥 + ℎ, 𝑧, 𝑡|x𝑠 )
x-h x x+h
𝑝𝑓: 𝑓𝑜𝑤𝑎𝑟𝑑 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 𝑑𝑎𝑡𝑎
𝑝𝑏: 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑑 𝑑𝑎𝑡𝑎
Angle-domain Crosscorrelation
 Angle-domain CIG decomposition (slant stack ):
𝑓 𝑥, 𝑧, 𝜃, 𝜏 =
angle-domain
𝑓 𝑥, 𝑧 + ℎ tan 𝜃 , ℎ, 𝜏 𝐱𝑠 𝑑ℎ
suboffset-domain
 Angle-domain crosscorrelation function :
𝑓 𝑥, 𝑧, 𝜃, 𝜏 =
𝑑𝐱 𝑠
𝑑ℎ
𝑝𝑓 𝑥 − ℎ, 𝑧 + ℎ tan 𝜃 , 𝑡 + 𝜏 𝐱 𝑠
𝑝𝑏 (𝑥 + ℎ, 𝑧 + ℎ tan 𝜃 , 𝑡|𝐱𝑠 ) 𝑑𝑡
Angle-domain Crosscorrelation:
physical meaning
𝑑𝐱 𝑠
𝑝𝑓 𝑥 − ℎ, 𝑧 + ℎ tan 𝜃 , 𝑡 𝐱 𝑠
𝑝𝑏 (𝑥 + ℎ, 𝑧 + ℎ tan 𝜃 , 𝑡|𝐱𝑠 ) 𝑑𝑡
𝑧
𝑧
𝜃
𝑑ℎ
𝑥
𝑝𝑓 (𝑥 − ℎ, 𝑧 + ℎ tan 𝜃 , 𝑡|𝐱 𝑠 )
Local plane wave
𝜃
𝑓 𝑥, 𝑧, 𝜃, 𝜏 = 0 =
𝑥
𝑝𝑏 (𝑥 + ℎ, 𝑧 + ℎ tan 𝜃 , 𝑡|𝐱 𝑠 )
Local plane wave
 Angle-domain crosscorrelation is the crosscorrelation
between downgoing and upgoing beams with a certain angle.
 The time delay for multi-arrivals is available in angle
-domain crosscorrelation function .
Angle-domain Wave-equation
Reflection Traveltime Inversion
Objective function: 𝜀 = 12
∆𝜏(𝐱, 𝜃)
𝐱
Velocity update:
𝟐
𝜽
𝑐𝑘+1 (x)= 𝑐𝑘 (x) + 𝛼𝑘 ∙ 𝛾𝑘 (x)
Gradient function:
𝜕𝜀
𝛾𝑘 (x)= −
=−
𝜕𝑐(𝐱)
𝐱
𝜽
𝜕(∆𝜏)
∆𝜏
𝜕𝑐(𝐱)
Traveltime wavepath
Traveltime Wavepath
 Angle-domain time delay ∆𝜏 𝜃
𝑓 𝑥, 𝑧, 𝜃, ∆𝜏 = max 𝑓 𝑥, 𝑧, 𝜃, 𝜏
−𝑇<𝜏<𝑇
𝑓 𝑥, 𝑧, 𝜃, ∆𝜏 = m𝑖𝑛 𝑓 𝑥, 𝑧, 𝜃, 𝜏
−𝑇<𝜏<𝑇
 Angle-domain connective function

𝜕𝑓(𝑥, 𝑧, 𝜃, 𝜏)
𝑓∆𝜏 =
=0
𝜕𝜏
Traveltime wavepath 𝜏=∆𝜏
𝜕(∆𝜏)
𝜕𝑓∆𝜏 𝜕𝑓∆𝜏
=−
𝜕𝑐(𝑥)
𝜕𝑐(𝑥) 𝜕(∆𝜏)
Transforming CSG Data  Xwell Trans. Data
reflection
=
Src-side Xwell Data
transmission
transmission
+
source
Redatuming data
Rec-side Xwell Data
Observed data
Redatuming source
Workflow
 Forward propagate source to trial
image points and get downgoing
beams
 Backward propagate observed
reflection data from geophonses to
trial image points , and get upgoing
beams
 Crosscorrelate downgoing beam and
upgoing beam, and pick angledomain time delay
 Smear time dealy along wavepath to
update velocity model
Outline
 Introduction
 Theory and method
 Numerical examples
Simple Salt Model
Sigsbee Salt Model
 Conclusions
Simple Salt Model
0
0
z (km)
t (s)
(a) True velocity model
0
x (km)
8
5
5
0
(c) Initial Velocity Model
8
0
1
z (km)
z (km)
0
4
x (km)
(d) RTM image
0
x (km)
8
4
0
V(km/s)
4
(b) CSG
x (km)
8
Angle-domain Crosscorrelation
(b) Angle-domain Crosscorrelation
(a) Initial Velocity Model
z (km)
0
4
0
x (km)
8
𝑓 𝑧, 𝜃, ∆𝜏
(c) Angle-domain Crosscorrelation
∆𝜏 = 𝛼(tan 𝜃)2
∆𝝉
∆𝜏: time delay
𝑓 𝑥, 𝑧, 𝜃, ∆𝜏
𝛼:
curvature
𝜃:
reflection angle
Inversion Result
(a) Initial velocity model
z (km)
0
4
5
0
x (km)
(b) Inverted velocity model
Velocity(km/s)
8
0
z (km)
1
4
0
x (km)
8
Inversion Result
(a) RTM image
z (km)
0
4
0
x (km)
(b) RTM image
0
x (km)
8
z (km)
0
4
8
Outline
 Introduction
 Theory and method
 Numerical examples
Simple Salt Model
Sigsbee Salt Model
 Conclusions
Sigsbee Model
(b) Initial velocity model
z(km)
0
z(km)
0
(a) True velocity model
Vinitial = 0.85 Vtrue
6
0
x(km)
(c) RTM image
12
x(km)
4.5
0
Velocity (km/s)
z(km)
6
0
6
0
1.5
x(km)
12
12
Initial Velocity Model
z(km)
0
CIG
0
z(km)
0
x(km)
Semblance
6
-50°
𝜃
+50°
6
-0.04
-0.2
∆𝜏(𝑠)
0
z(km)
6
𝛼
12
Crosscorrelation
∆𝜏 = 𝛼(tan 𝜃)2
0.2
0.04
-50°
𝜃
+50°
Initial Velocity Model
z(km)
0
CIG
z(km)
0
x(km)
Semblance
12
Crosscorrelation
0
-0.2
∆𝜏(𝑠)
0
z(km)
6
∆𝜏 = 𝛼(tan 𝜃)2
6
-50°
𝜃
+50°
6
-0.04
𝛼
0.2
0.04
-50°
𝜃
+50°
Initial Velocity Model
z(km)
0
CIG
0
z(km)
0
x(km)
Semblance
6
-50°
𝜃
+50°
6
-0.04
12
Crosscorrelation
-0.2
∆𝜏(𝑠)
0
z(km)
6
𝛼
∆𝜏 = 𝛼(tan 𝜃)2
0.2
0.04
-50°
𝜃
+50°
Inverted Velocity Model
z(km)
0
CIG
0
z(km)
0
x(km)
Semblance
6
-50°
𝜃
+50°
6
-0.04
12
Crosscorrelation
-0.2
∆𝜏(𝑠)
0
z(km)
6
𝛼
0.04
0.2
-50°
∆𝜏 = 𝛼(tan 𝜃)2
𝜃
+50°
Inverted Velocity Model
z(km)
0
CIG
6
-50°
-0.2
0
z(km)
0
𝜃
12
Crosscorrelation
x(km)
Semblance
+50°
6
-0.04
∆𝜏(𝑠)
0
z(km)
6
𝛼
0.04
0.2
-50°
∆𝜏 = 𝛼(tan 𝜃)2
𝜃
+50°
Inverted Velocity Model
z(km)
0
CIG
z(km)
0
x(km)
Semblance
6
-50°
𝜃
+50°
12
Crosscorrelation
0
-0.2
∆𝜏(𝑠)
0
z(km)
6
6
-0.04
𝛼
0.04
∆𝜏 = 𝛼(tan 𝜃)2
0.2
-50°
𝜃
+50°
RTM Image
(b) RTM image using inverted model
0
z(km)
z(km)
(a) RTM image using initial velocity
0
6
0
6
x(km)
12
0
x(km)
12
Outline




Introduction
Theory and method
Numerical examples
Conclusions
Velocity Inversion Methods
Data space
(Tomography)
Ray-based tomography
Wave-equ. traveltime
inversion
Full Wavform inversion
Inversion
Image space
(MVA)
Ray-based MVA
Wave-equ. traveltime
inversion
Wave-equ. MVA
Angle-domain Wave-equation
Reflection Traveltime Inversion
 Traveltime inversion without high-frequency
approximation
 Misfit function somewhat linear with respect
to velocity perturbation.
 Wave-equation inversion less sensitive to
amplitude
 Multi-arrival traveltime inversion
 Beam-based reflection traveltime inversion
Thank you for your attention