Transcript SIALIC ACID
Essentials of Glycobiology Lecture 10 April 13th. 2004 Ajit Varki The Sialic Acids Sialic Acids on Vetebrate Glycans CHONDROITIN SULFATE HYALURONAN P GLYCOSAMINOGLYCANS HEPARAN SULFATE S S S S S Ser-O- S S NS NS -O-Ser Proteoglycan N-LINKED CHAINS Ac O-LINKED CHAIN GLYCOPHOSPHOLIPID ANCHOR P S O Ser/Thr GLYCOSPHINGOLIPID N Asn N Asn NH 2 INOSITOL Glycoprotein Ac OUTSIDE Sialic Acids INSIDE O-LINKED GlcNAc O Ser Etn P P S The "Primary" Sialic Acids H H 9 9 H-C-OH 8 H-C-OH 7 H-C-OH H-C-OH 8 H-C-OH 7 H-C-OH H O H H-C-C-N H C5 H 6 C O O C-O1 2 H C H3 C OH H 4 C OH a-D-Neu5Ac 6 C O O HO C5 H 4 H C H3 C OH H 1 - C-O 2 C OH a-D-KDN N-acetyl-neuraminic acid KDN (2-keto-5-acetamido-3,5-dideoxy(2-keto-3-deoxy-D-glyceroD-glycero-D-galacto-nonulosonic acid) D-galacto-nonulosonic acid) “Neu5Ac” “NANA”, “NeuAc” Thought to be the metabolic precursors of all other sialic acids Pathways of N-acetylneuraminic Acid (Neu5Ac) metabolism -Neu5Ac ENDO/PINOCYTOSIS Neu5Ac PLASMA MEMBRANE SECRETORY PATHWAYS ManNA c -Neu5Ac -Neu5Ac 4 Neu5Ac UDP-GlcNAc LYOSOSOMES 5 Feedback Inhibition CYTOSOL 1 ManNAc Neu5Ac NUCLEUS 3 CMP-Neu5Ac 2 -Neu5Ac GOLGI CELL MEMBRANE CMP-Sialic Acid Synthase CMP-Sialic acid transporter Sialyltransferases Lysosomal Sialidase 5 Sialic Acid Exporter 1 2 3 4 ER Newly synthesized glycoconjugate Sialyltransferases in the Mammalian Genome ST6Gal-I ST6Gal-II Enzyme ST3Gal-I ST3Gal-II ST3Gal-III ST3Gal-IV ST3Gal-V ST3Gal-VI ST6GalNAc-I ST6GalNAc-II ST6GalNAc-III ST6GalNAc-IV ST6GalNAc-V ST6GalNAc-VI Galactose N-Acetylgalactosamine ST8Sia-I ST8Sia-II ST8Sia-III ST8Sia-IV ST8Sia-V ST8Sia-VI Acceptor Galactose Linkage a2-6 a2-3 a2-6 Sialic acid a2-8 Jamey Marth Biological Roles of Sialic Acids Structural/Physical Roles Siglecs Factor H Selectins Uterine Agglutinin Laminins Extrinsic Recognition “Non-self” Intrinsic Recognition “Self” INTRINSIC RECEPTOR Influenza Malaria Cholera Helicobacter Mycoplasma Rotavirus Polyoma virus Coronavirus Pertussis Tetanus etc. EXTRINSIC RECEPTOR SELF M SELF SIALYLATED OLIGOSACCHARIDE = M = Micro-organism or Toxin Molecular Mimicry E.Coli Gonococcus Meningococcus Campylobacter Trypanosoma Streptococcus Etc. DID THE SIALIC ACIDS APPEAR LATE IN EVOLUTION? Deuterostomes Protostomes Mammalia Aves Reptilia Amphibia DETECTED Dipnoi? Teleostei Exceptions Chondrostei Elasmobranchi • Certain bacteria (mostly animal pathogens) Agnatha • Certain protozoa (mostly animal pathogens) Cephalochordata • Certain fungi (animal pathogens) Urochordata Hemichordata • Rare cultured insect cell lines? Echinodermata • Rare insect embryo stages? • Octopus and Squid brain? Insecta Crustacea Arachinida NOT Annelidia Mollusca DETECTED Brachiopoda Bryozoa Adapted from : Schauer (1982) Microbial genes in the human genome: lateral transfer or gene loss? Salzberg et al. Science 2001, 292, 1903-1906 • 40 Candidate Genes fulfilling criteria suggesting Lateral transfer from Vertebrates to Bacteria OUR ANALYSIS OF THE LIST: • 7 of the 40 are involved in sialic acid biosynthesis, turnover or degradation • Thus, pathway involving ~0.1% of the human genome represents almost 20% of the potential examples of lateral gene transfer between vertebrates and bacteria! Phylogenetic relationships of enzymes involved in the metabolism of sialic acids Neu5Ac/bacteria Neu5Ac/Vertebrates GlcNAc-6-phosphate UDP-GlcNAc GlcNAc-6phosphate 2-epimerase UDP-GlcNAc 2-epimerase UDP ManNAc-6 -phosphate ManNAc ATP Phosphatase ManNAc kinase ADP Pi ManNAc ManNAc-6 -phosphate PEP PEP Neu5Ac synthetase Pi Pi Neu5Ac-9phosphate synthetase Neu5Ac-9-phosphate Neu5Ac-9-phosphate phosphatase HOMOLOGY Pi Neu5Ac Angata and Varki Chemical Reviews 102, 439-469, 2002. CTP Neu5Ac CTP CMP-Neu5Ac synthetase PPi CMP-Neu5Ac CMP-Neu5Ac synthetase PPi CMP-Neu5Ac "Universal tree" of cellular organisms and occurrence of sialic acids Archae a Biochemical Evidence Euryar chaeota C renarchaeota Genetic Evidence Bacteri a Eukarya Gram- negative Gram- positive Low G+C Protozoa Gram- positive H ig h G+C Protostomes Chl amydi a Thermus/ D einococcus Cyanobacteri a D eutero stomes Aq uifex Common ancestor of cellular lif e Spir ochetes Fung i Plants Phylogenetic relationships of enzymes involved in the metabolism of sialic acids and KDO KDO/bacteria Neu5Ac/bacteria GlcNAc-6-phosphate UDP-GlcNAc GlcNAc-6phosphate 2-epimerase UDP-GlcNAc 2-epimerase UDP ManNAc-6 -phosphate ManNAc ATP Phosphatase ManNAc kinase ADP Pi ManNAc Ara-5-phosphate Pi ManNAc-6 -phosphate PEP PEP KDO-8-phosphate synthetase PEP Neu5Ac synthetase Pi Pi Neu5Ac-9-phosphate phosphatase Phosphatase Pi Pi Angata and Varki Chemical Reviews 102, 439-469, 2002. KDO CTP CMP-KDO synthetase PPi CMP-KDO Neu5Ac-9phosphate synthetase Neu5Ac-9-phosphate KDO-8-phosphate HOMOLOGY Neu5Ac/Vertebrates Neu5Ac CTP Neu5Ac CTP CMP-Neu5Ac synthetase PPi CMP-Neu5Ac CMP-Neu5Ac synthetase PPi CMP-Neu5Ac Possible Scenarios for the Phylogenetic Origins of Sialic Acids Scenario 1: Ancient invention Lateral Transfer Amongst Prokaryotes Bacteria Inventio n of Sia Arch aea Eu karya Deu ter ostom e Lin eag e Loss or partial loss in many lineages Biochemical Evidence Genetic Evidence Possible Scenarios for the Phylogenetic Origins of Sialic Acids Biochemical Evidence Lateral Transfer Amongst Prokaryotes Genetic Evidence Lateral Transfer to Early Animal Ancestor Loss or partial loss in many lineages Possible Scenarios for the Phylogenetic Origins of Sialic Acids Biochemical Evidence Lateral Transfer Amongst Prokaryotes Genetic Evidence Lateral Transfer To Prokaryotes from Early Animal Ancestor Loss or partial loss in many lineages Biological Roles of Sialic Acids Structural/Physical Roles Siglecs Factor H Selectins Uterine Agglutinin Laminins Extrinsic Recognition “Non-self” Intrinsic Recognition “Self” INTRINSIC RECEPTOR Influenza Malaria Cholera Helicobacter Mycoplasma Rotavirus Polyoma virus Coronavirus Pertussis Tetanus etc. EXTRINSIC RECEPTOR SELF M SELF SIALYLATED OLIGOSACCHARIDE = M = Micro-organism or Toxin Molecular Mimicry E.Coli Gonococcus Meningococcus Campylobacter Trypanosoma Streptococcus Etc. Terminal Sialic acids, Oligosialic acids, Polysialic acids and the Enzymes that can degrade them ENDOSIALIDASE (ENDO-NEURAMINIDASE) Siaa2-8Siaa2-8Siaa2-8Siaa2-8Siaa2-3(6)Galb1Ganglioside or N-Glycan or Oligosialic Acid Siaa2-8Siaa2-3(6)Galb1- O-glycan Or SIALIDASE (NEURAMINIDASE) Bacterial Glycan Polysialic Acid Terminal Sialic Acid Siaa2-3(6)Galb1- The Neural Cell Adhesion Molecule (N-CAM) Expression of Polysialic Acid on N-CAM also affects Cell-Cell Interactions involving Other Adhesion Molecules WHY DID THE NCAM-PSA MECHANISM EVOLVE? MOLECULAR MECHANISM FOR GLOBAL REGULATION: PSA evolved to allow regulation of an expanded array of different CAMs without the requirement that all of these CAMs be affected by the same signaling pathways EXPANDED NEED FOR PLASTICITY: Migration of precursor cells Pathfinding by large groups of axons Retention of plasticity in certain adult brain tissues Evolutionary History of N-CAM NCAM/apCAM/FasII Progenitor VERTEBRATES +PSA, +NCAM-2 INVERTEBRATES (no PSA) More adult PSA (brain) Mouse NCAM Human NCAM More “plastic” Chimpanzee NCAM Aplysia apCAM More “hardwired” Drosophila FasII Fly: “most of my genes are like his” Albert: “vive la différence” Biological Roles of Sialic Acids Structural/Physical Roles Siglecs Factor H Selectins Uterine Agglutinin Laminins Ligands for Intrinsic Receptors Influenza Malaria Cholera Helicobacter Mycoplasma Rotavirus Polyoma virus Coronavirus Pertussis Tetanus etc. Ligands for Extrinsic Receptors EXTRINSIC RECEPTOR SELF SELF M INTRINSIC RECEPTOR SIALYLATED GLYCAN = ? M = Micro-organism/Toxin Molecular Mimicry E.Coli Gonococcus Meningococcus Campylobacter Trypanosoma Streptococcus Etc. INFLUENZA A & B VIRUSES BIND TO CELL SURFACES VIA A HEMAGGLUTININ THAT RECOGNIZES SIALIC ACIDS HEMAGGLUTININ 9 INFLUENZA A OR B VIRUS LINKAGE TO UNDERLYING SUGAR CHAIN NEURAMINIDASE THE "RECEPTOR-DESTROYING ENZYME" IS A NEURAMINIDASE (SIALIDASE) Sialic Acids Restrict Complement Activation on Cell Surfaces FLUID PHASE P C3 Bb Factor H Bb C5 C3b C3b I iC3b Bb P Factor H C5b Bb C3b C3b Membrane Attack Complex ACTIVATING SURFACE I Requires side chain Sia C3b of Sia NON- ACTIVATING SURFACE iC3b Sialic Acid-binding Lectins are Widespread in Nature GROUP SUB-GROUP Vertebrate C - type lectins I - type lectins Unclassified Adhesin Toxin Hemagglutinin Hemagglutinin-esterase Hemagglutinin-neuraminidase Plasmodium Tritrichomonas Crab Lobster Prawn Scorpion Beetle Spider Slug Snail Seed Bark Root Mushroom Bacterial Viral Protozoal Crustacean Arachnid Mollusc Plant Fungal EXAMPLE L-Selectin CD22 (Siglec-2) Complement Factor H E.coli S-adhesins Vibrio cholerae toxin Influenza A virus Influenza C virus Sendai virus P. falciparum erythrocyte-binding antigen Tritrichomonas mobilensis Lectin. Limulin L-Agglutinin I Monodin Vaejovis spinigerus lectin Allomyrina dichotoma lectins Aphonopelma lectin Limax flavus agglutinin AchatininH Maackia Amurensis lectin Sambucus Nigra lectin Tricosanthes japonicum lectin Hericium erinaceum lectin Natural substitutions can change the mass and shape of the Sialic Acid molecule N -ACETYLNEURAMINIC ACID 9 8 7 6 2 1 5 4 3 9 8 7 6 1 2 5 4 Carbon Oxygen 8-O-METHYL-7,9 DI-O-ACETYLN-GLYCOLYLNEURAMINIC ACID 3 Nitrogen Hydrogen R7 THE SIALIC ACIDS R9 R8 R7 R4 = hydrogen or: R9 Acetyl 9 7 1 8 6 R9 R8 R7 R4 R5 Phosphate 2 * 5 3 R8 R2 R2 R4 OXYGEN HYDROGEN R8 Methyl Sulfate N-acetyl R5 Hydroxyl R8 R5 N-glycolyl Lactyl R9 -at physiological pH, ionized or lactonized or lactamized R1 4 R9 CARBON R1 R5 Amino R5 Hydrogen or: a-linkage to: -Gal (-3 -4 -6) or -GalNAc (-6) or -GlcNAc(-4 -6) or -Sialic Acid (-8 -9) or b-linkage to CMP or Absent in: - 2,3dehydro or - 2,7anhydro * (double-bond when R2 absent) Nomenclature and Abbreviations Combinations of: Neu = neuraminic acid KDN = 2-keto-3-deoxy-nonulosonic acid. Ac = acetyl, Gc = glycolyl, Me = methyl, Lt = lactyl, S=sulfate Examples: N-glycolyl-neuraminic acid = Neu5Gc 9-O-acetyl-8-O-methyl-N-acetyl-neuraminic acid = Neu5,9Ac 28Me 7,8,9-tri-O-acetyl-N-glycolyl-neuraminic acid = Neu5Gc7,8,9Ac 3 Uncertain of the type of the sialic acid ? Use generic abbreviation Sia Sialic acid of unknown type with O- acetyl at 9-position = Sia9Ac INFLUENZA A VIRUS O-ACETYL ESTERS AT THE 7- AND 9-POSITIONS OF SIALIC ACIDS 9 7 N-ACETYL-NEURAMINIC ACID 8 9-O-acetylesterases O-acetyltransferases 9 9 8 7 7 8 INFLUENZA C CORONAVIRUSES O-acetyl Migration Migrase Enzyme? 7-O-ACETYL-N-ACETYL-NEURAMINIC ACID 9-O-ACETYL-N-ACETYL-NEURAMINIC ACID INFLUENZA C AND CORONAVIRUS HEMAGGLUTININESTERASES SPECIFICALLY RECOGNIZE 9-O-ACETYLATED SIALIC ACIDS HEMAGGLUTININ 9 INFLUENZA C VIRUS Ser ESTERASE LINKAGE TO UNDERLYING SUGAR THE "RECEPTOR-DESTROYING ENZYME" IS A SIALIC ACID-SPECIFIC 9-O-ACETYL-ESTERASE O AT 37 C, THE ESTERASE ACTIVITY IS DOMINANT Sialic Acid-binding Proteins recognize specific features of Sialic Acids in natural ligands: some examples Lectins Linkage Underlying Saccharide Importance for Recognition Carbo- N-Acyl Side 9-O-Acetylation xylate Group Chain of Side chain yes No No No? Selectins Siaa2-3 Galb1-(3)4GlcNAcb1a1 Fuc(3)4 CD22 (Siglec-2) Siaa2-6 Galb1-4GlcNAcb1 yes yes yes Blocks Sialoadhesin (Siglec-1) Siaa2-3 Galb1-4GlcNAcb1 yes yes yes Blocks Complement Factor H Siaa2-? ? yes no? yes Blocks P. falciparum merozoite lectin Siaa2-3 Galb1-4GlcNAcb1- ? no? ? Influenza A Hemagglutinin Siaa2-3 Siaa2-6 ? yes variable yes Blocks - yes no? yes Required Influenza C Hemagglutinin-esterase Siaa2-X Blocks? Two Major Kinds of Sialic Acids in Mammalian Cells N-ACETYLNEURAMINIC ACID (Neu5Ac) 9 8 7 6 2 1 5 3 4 LINKAGE TO UNDERLYING SUGAR CHAIN 9 8 7 6 2 1 N-GLYCOLYLNEURAMINIC ACID 5 4 Carbon (Neu5Gc) 3 LINKAGE TO UNDERLYING SUGAR CHAIN Oxygen Nitrogen Hydrogen Millions of Years Before Present* MEAN Amino Acid Difference 0 5 <1.0% Neu5Ac Homo sapiens Human ~0.5% “Great Apes” Neu5Gc Gorilla gorilla Pan paniscus Pan troglodytes Bonobo Chimpanzee Gorilla Pongo pygmaeus Orangutan Genetic Mutation Causing loss Of Neu5Gc 10 *Precise Timing Uncertain Evolutionary Relationships amongst Humans and the Great Apes The Sialic Acids R1 R1 9 CARBON 7 1 8 6 R2 R1 2 5 3 NITROGEN OXYGEN R3 4 HYDROGEN R1 R1 = H, ACETYL (4,7,8,9), LACTYL (9), METHYL (8), SULFATE (8,9), PHOSPHATE (9), ANHYDRO (4,8 or 2,7), SIALIC ACID (8,9), FUCOSE(4), GLUCOSE(8), OR GALACTOSE(4) R2 = N-ACETYL, N-GLYCOLYL, N-GLYCOLYL-O-ACETYL, AMINO, HYDROXYL R3 = Gal (3/4/6), GalNAc(6), GlcNAc(4/6), Sia (8/9) or 5-O-Neu5Gc, (absent in 2,6 / 2,7 ANHYDRO)