Two-photon absorption standards in the 550

Download Report

Transcript Two-photon absorption standards in the 550

Two-photon absorption
standards in the 550-1600 nm
excitation range: establishing a
correction curve for accurate
cross section calibration
Nikolay S. Makarov, Mikhail Drobizhev, Aleksander Rebane
Department of Physics, Montana State University, Bozeman, MT
Outline
• Motivation
• Experimental setup
• Pulse duration
• Beam profile
• Correction curve
• 2PA standards, example
• Conclusions
Motivation
If the 2PA reference standards were available:
Absolute 2PA cross section:
 2,sample 
F2,sample (reg )Creferencereference (reg )
F2,reference (reg )Csample sample (reg )
A2 PA,sample ( ) 
Relative 2PA spectrum:
F2,sample ( )
F2,reference ( )
 2,reference
A2 PA,reference ( )
If there are no standards (establishing standards):
Absolute 2PA cross section:
2 
 3/ 2
2 (ln 2) 3 / 2
W1 (h 2 ) 2 F2
1  10OD
gxy
1
2
ln10OD
(W2 ) h 1 F1
2
Relative 2PA spectrum:
Correction curve:
 h 
   x y  
A2 PA    F2  
 W   
C     x y 
Experimental setup
laser system
Coherent MIRA 900
Coherent VERDI
CW 532nm
OPA wavelength control
pol.
Coherent LEGEND-HE
regen. amplifier, 1kHz
PC
LabView
color
filters
serial control
TOPAS-C
filter wheel control
SHG
crystal
pulse characterization
USB control
GPIB
FW
autocorrelator
FROG
digital
oscilloscope
ref.
detector
/2
PH1
LN
CCD
L1
sample
600
l mm-1
M1
PH2
spectrometer
spectrometer
& CCD control
Pulse duration
600
800
1000
1200
1400
SH signal wavelength, nm
1600
140
120
120
100
100
80
80
SH signal
SH idler
60
60
Signal
40
40
20
20
0
0
600
800
1000
1200
Wavelength, nm
1400
1600
Pulse duration, fs
Pulse duration, fs
550
140
600
650
700
750
800
140
140
120
120
100
100
80
80
60
40
SH signal
60
40
20
20
0
0
100
100
80
80
60
Fundamental signal
60
40
40
20
20
0
0
1100 1200 1300 1400 1500 1600
Signal wavelength, nm
Measured with SHG autocorrelator Clark MXR AC-150
~ 70 – 140 fs pulse duration range
~ 5% fixed wavelength measurement error
~ 3% step-to-step relative measurement error
Beam profile
600
800
1000
1200
1400
1600
0.10
0.09
0.10
horizontal diameter
vertical diameter
model: (OPA is 2 meters before the lens, d0=0.065 cm)
0.09
0.08
Beam diametr, cm
0.07
0.08
0.07
SH signal
0.06
0.06
0.05
0.05
Signal
0.04
0.04
SH idler
0.03
0.03
0.02
0.02
0.01
0.01
0.00
0.00
600
800
1000
1200
1400
1600
Wavelength, nm
Measured with CCD camera Xillix MicroImager PMI1400
~ 0.03 – 0.10 cm diameter range
~ 4% fixed wavelength measurement error
Correction curve
2
Correction curve, cm fs
600
800
1000
1200
1400
1600
0.60
0.60
0.55
0.55
0.50
0.50
0.45
0.45
0.40
0.40
0.35
0.35
0.30
0.30
0.25
0.25
0.20
0.20
0.15
0.15
0.10
0.10
0.05
0.05
0.00
0.00
600
800
1000
1200
1400
Wavelength, nm
~ 8% fixed wavelength measurement error
~ 3% step-to-step relative measurement error
1600
2PA standard: Rhodamine 6G
Laser wavelength, nm
600
200
700
800
900
Hermann, 1972
Oulianov, 2001
Kauert, 2006
Sengupta, 2000
Tian, 2002
Kapoor, 2003
Clay, 2007
Kaatz, 1999
Bradley, 1972
Li, 1982
Catalano, 1982
Penzkofer, 1987
Sperber, 1986
This work
Albota, 1998
Sailaja, 2007
180
160
140
120
100
2
, GM
1000
80
1100
200
180
160
140
120
100
80
60
60
40
40
20
20
0
300
350
400
450
Transition wavelength, nm
500
0
550
2PA standard: Rhodamine B
Laser wavelength, nm
600
300
700
800
900
1000
1100
1200
280
280
Xu, 1996
Xu, 1996
Xu, 1996
Hermann, 1972
Clay, 2007
Li, 1982
Bradley, 1972
Catalano, 1981
Oulianov, 2001
Xu, 1996
Kauert, 2006
Kaatz, 1999
Sperber, 1986
Karotki, 2006
This work
Sailaja, 2007
260
240
220
200
, GM
180
2
1300
300
160
140
120
100
260
240
220
200
180
160
140
120
100
80
80
60
60
40
40
20
20
0
300
350
400
450
500
550
Transition wavelength, nm
600
0
650
400
450
500
550
600
650
700
750
800
850
1.0
600
Coumarin 540A, CCl4
0.7
680
720
800
560
4
2.00x10
9,10-Dichloroanthracene, CH2Cl2
9
640
Rhodamine 610, MeOH
0.4
Tetraphenyl-porphine, CCl4
Zn-tetra-tert-butyl Pc, CCl4+Pyr
0.3
Zn-tetrakis-(phenylthio)-Pc, CCl4+Pyr
0.2
4
4.0
1.000x10
3.5
8.750x10
3.0
7.500x10
2.5
6.250x10
2.0
5.000x10
1.5
3.750x10
1.0
2.500x10
0.5
1.250x10
3
3
3
3
3
Si-Nc dioctyloxide, CCl4
3
3
0.0
450
500
720
800
550
600
650
700
750
800
280
850
300
1.75x10
8
560
960
5
Bis-diphenylaminostilbene, CH2Cl2
720
800
2.8x10
240
2.4x10
200
2.0x10
160
1.6x10
120
1.2x10
80
8.0x10
4
360
380
700
800
900
1000
1100
50
Perylene, CH2Cl2
4
2.50x10
Coumarin 540A, CCl4
45
4
2.25x10
4
5
5
280
600
960
6x10
5
3.2x10
340
Laser wavelength, nm
880
3.6x10
320
4
640
6
4.0x10
360
320
0.000
400
Transition wavelength, nm
Laser wavelength, nm
880
400
4
4
1.125x10
-1
, GM
Rhodamine 590, MeOH
Laser wavelength, nm
760
4
1.250x10
Wavelength, nm
640
800
-1
Lucifer yellow, MeOH
0.5
400
Laser wavelength, nm
760
, M cm
Fluorescein, H2O pH11
0.0
600
720
9-Chloroanthracene, CH2Cl2
Coumarin 485, MeOH
0.6
0.1
560
680
4.5
Perylene, CH2Cl2
Styryl 9M, Chloroform
10
640
5.0
Bis-diphenylaminostilbene, CH2Cl2
0.8
Normalized fluorescence intensity
560
9,10-Dichloroanthracene, CH2Cl2
2
2PA standards:
Full set
Laser wavelength, nm
9-Chloroanthracene, CH2Cl2
0.9
5x10
4
40
2.00x10
35
1.75x10
30
1.50x10
25
1.25x10
20
1.00x10
15
7.50x10
10
5.00x10
5
2.50x10
1.50x10
5
3
5
3
-1
, M cm
4
-1
, GM
4
2
-1
3x10
2
-1
5
4
3
-1
, GM
-1
, M cm
3
7.50x10
, GM
-1
4
5
4
4x10
5
2
-1
, M cm
1.00x10
2
, GM
4
5
4
4
4
1.25x10
6
, M cm
7
4
4
2
2x10
1
1x10
3
5.00x10
4
0
280
320
Laser wavelength, nm
600
700
800
900
360
400
440
0
280
480
1000
40
1100
600
4
35
4
700
800
900
1000
600
1100
5
700
800
440
900
1.08x10
96
9.60x10
4
84
8.40x10
4
72
7.20x10
60
6.00x10
48
4.80x10
36
3.60x10
1000
3
8.0x10
15
3
6.0x10
4
2.0
2.0x10
-1
2.5x10
4
4
1.5
1.5x10
5
3
12
2.0x10
0
300
350
400
450
500
0.0
550
350
Transition wavelength, nm
900
1000
1100
1200
1300
500
0.0
300
350
1500
800
5
Zinc-tetra-tert-butyl-phthalocyanine, CCl4+Pyridine
900
1000
1100
1200
1300
1500
900
5
Zinc-tetrakis-(phenylthio)-phthalocyanine, CCl4+Pyridine
1000
450
500
0.0
550
1100
1200
1300
1400
1.50x10
1600
5
250
1.25x10
Silicon-naphthalocyanine dioctyloxide, CCl4
30
4
5.00x10
7.50x10
4
100
5.00x10
10
0.00
0
450
500
550
600
650
Transition wavelength, nm
700
750
8x10
700
7x10
5
2.5x10
4
2.0x10
3
1.5x10
2
1.0x10
1
5.0x10
5
5
5
5
5
5
4
400
500
550
600
650
700
750
1000
1100
1200
1300
1400
1500
1600
6x10
500
5x10
400
4x10
300
3x10
-1
600
5
5
, GM
2
5
4
700
7x10
600
6x10
500
5x10
400
4x10
300
3x10
200
2x10
100
1x10
4
4
4
4
5
4
5
2x10
2.50x10
5
100
450
500
550
600
650
Transition wavelength, nm
700
0.00
750
0
450
4
8x10
Styryl 9M, Chloroform
-1
, GM
450
0.0
800
5
2
-1
, GM
3.0x10
4
50
0
400
6
5
800
200
4
400
-1
4
150
20
2.50x10
3.5x10
5
9x10
, M cm
4
7.50x10
1.00x10
, M cm
40
5
200
2
-1
-1
, M cm
1.00x10
2
, GM
5
50
5
7
800
5
60
5
4.0x10
900
6
1.50x10
1.25x10
5
4.5x10
Laser wavelength, nm
1500
5
70
1600
Transition wavelength, nm
5
300
80
1500
8
0
350
1x10
900
5
1.75x10
400
1000
1.75x10
1400
5.0x10
Laser wavelength, nm
1400
350
2.00x10
1300
Tetraphenyl-porphine, CCl4
Transition wavelength, nm
Laser wavelength, nm
1400
100
90
450
5.0x10
Transition wavelength, nm
Laser wavelength, nm
800
400
0.00
550
1200
3
0.5
1.20x10
0
300
1100
1.0x10
2.40x10
4
1000
4
4
24
900
4
2.5
1.0
3
4.0x10
500
4
4
10
450
3.0x10
-1
, GM
-1
4
800
9
4
3.5x10
2
-1
4
400
10
4
, M cm
2
-1
1.0x10
, GM
4
20
4
4
2
, M cm
-1
1.2x10
700
1100
4.0x10
3.0
25
350
Transition wavelength, nm
Laser wavelength, nm
3.5
30
1.4x10
300
480
Lucifer yellow, MeOH
5
4
1.6x10
400
4.0
1.20x10
Fluorescein, Water, pH11
108
1.8x10
360
Transition wavelength, nm
Laser wavelength, nm
120
2.0x10
Coumarin 485, MeOH
, GM
320
Transition wavelength, nm
Laser wavelength, nm
-1
380
-1
360
, M cm
340
3
0.00
550
0
0
-1
320
Transition wavelength, nm
3
-1
300
0.0
, GM
280
0.00
400
4.0x10
2
0
4
40
1x10
500
550
600
650
700
Transition wavelength, nm
750
0
800
, M cm
3
2.50x10
1
4
, M cm
2
0
450
4
500
550
600
650
700
Transition wavelength, nm
750
0
800
Conclusions
• 2PA of 15 commercially available dyes in 550–1600 nm
•  10% estimated accuracy of 2PA cross sections
• Values are in good agreement with literature data
(fluorescence technique)
• Data can be used as reference for determining absolute 2PA
cross sections and spectra
Acknowledgement
This work is supported by AFOSR Grant No. FA9550-05-1-0357