Transcript pps
Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata Department of Electronics Quick Review over the Last Lecture Classic model : Dulong-Petit empirical law c V, mol 3R 0 Einstein model : E D T Debye model : • E : Einstein temperature • D : Debye temperature • c V, mol ~ 3R for E << T • c V, mol ~ 3R for D << T • c V, mol exp (- E / T) for E << T • c V, mol T 3 for D << T Contents of Introductory Nanotechnology First half of the course : Basic condensed matter physics 1. Why solids are solid ? 2. What is the most common atom on the earth ? 3. How does an electron travel in a material ? 4. How does lattices vibrate thermally ? 5. What is a semi-conductor ? 6. How does an electron tunnel through a barrier ? 7. Why does a magnet attract / retract ? 8. What happens at interfaces ? Second half of the course : Introduction to nanotechnology (nano-fabrication / application) What Is a Semi-Conductor ? Elemental / compound semiconductor • • Intrinsic / extrinsic semiconductors • • n / p-dope Temperature dependence • Schottky junctions • pn junctions What is semi-conductor ? Band diagrams : Allowed Allowed Allowed Forbidden Forbidden Allowed Forbidden Allowed metal conductors Forbidden Allowed Allowed semiconductors insulators With very small energy, electrons can overcome the forbidden band. EF Energy Band of a semiconductor Schematic energy band diagram : E Conduction band conduction electron Band gap hole Valence band Elemental Semiconductors In the periodic table, Carrier density : Cu (metal) ~ 10 23 cm -3 Ge (semiconductor) ~ 10 13 cm -3 Semimetal : conduction and valence bands are slightly overlaped. As (semimetal) ~ 10 20 cm -3 Sb (semimetal) ~ 10 19 cm -3 C (semimetal) ~ 10 18 cm -3 Bi (semimetal) ~ 10 17 cm -3 Fabrication of a Si-Based Integrated Circuit Czochralski method : Si purity (99.999999999 %) * http://www.wikipedia.org/ Compound Semiconductors In the periodic table, III-V compounds : GaAs, InAs, InSb, AlP, BP, ... II-VI compounds : ZnO, CdS, CdTe, ... IV-IV compounds : SiC, GeSi IV-VI compounds : PbSe, PbTe, SnTe, ... Shockley Model Contributions for electrical transport : E Conduction band Band gap conduction electron (number density : n) positive hole (number density : p) Valence band Ambipolar conduction Intrinsic semiconductor e h nq e pq h n i q e h n i n p * http://www.wikipedia.org/ Carrier Number Density of an Intrinsic Semiconductor Carrier number density is defined as n f EgEdE Here, the Fermi distribution function is f E 1 expE EF kBT 1 For the carriers like free electrons with m*, the density of states is 32 * 1 2m gE 2 E 2 2 2 For electrons with effective mass me*, g(E) in the conduction band is written with respect to the energy level EC, 32 * 1 2me g C E 2 E EC 2 2 2 For holes with effective mass mp*, g(E) in the valence band is written with respect to the energy level EV = 0, 2m * 3 2 1 p g V E 2 E 2 2 2 * H. Ibach and H. Lüth, Solid-State Physics (Springer, Berlin, 2003). Carrier Number Density of an Intrinsic Semiconductor (Cont'd) fp(E) for holes equals to the numbers of unoccupied states by electrons : f p E 1 f e E n is an integral in the conduction band from the bottom EC to top Ect : n E Ct EC f e Eg e EdE E Ct EC * 3 2 1 2me 1 E E dE C 2 2 expE EF kBT 1 2 p is an integral in the valence band from the bottom -EVb to top 0 : p 0 E Vb 0 E vb f p Eg p EdE 0 E vb 2m * 3 2 1 p 1 E 1 dE 2 2 2 expE EF kBT 1 2m * 3 2 1 p 1 E dE 2 2 exp E EF kBT 1 2 Here, EC (= Eg = EC - EV) >> kBT E - EF EC /2 for EC E Ect (EF ~ EC /2) f e E exp E EF kBT Similarly, EC >> kBT -(E - EF) EC /2 for EVb E 0 f p E expE EF kBT Carrier Number Density of an Intrinsic Semiconductor (Cont'd) For E - EF > 3kBT, f e EF 3kBT 0.05 and hence ECt ∞ Similarly, f p EF 3kBT 0.05 and hence EVb -∞ * 3 2 1 2me n 2 2 2 2m * 3 2 1 p p 2 2 2 EC 0 E EC expE EF kBT dE E expE EF kBT dE As a result, n N C expEC EF kBT N C f e EC N N T 3 2 C Ce 2m * k 3 2 e B N Ce 2 2 h N N T 3 2 Vp V 2m * k 3 2 n N V expEF kBT N V f p 0 p B N Vp 2 2 h Fermi Level of an Intrinsic Semiconductor For an intrinsic semiconductor, n p n i N C expEC EF kBT N V expEF kBT m * 1 3 p EF EC kBT ln * m 2 4 e Assuming, me* = mp* = m* EF 1 1 EC Eg 2 2 np product is calculated to be np n i N C N V expEC 2 2k BT 3 k BT 4 2 m e* m p* h 32 exp EC k BT constant for small ni can be applied for an extrinsic (impurity) semiconductor Extrinsic Semiconductors Doping of an impurity into an intrinsic semiconductor : n-type extrinsic semiconductor : e.g., Si (+ P, As, Sb : donor) conduction electron As neutral donor As positive donor p-type extrinsic semiconductor : e.g., Si (+ Ga, Al, B : acceptor) conduction band B neutral acceptor holes B negative acceptor * M. Sakata, Solid State Physics (Baifukan, Tokyo, 1989). Carrier Number Density of an Extrinsic Semiconductor Numbers of holes in the valence band EV should equal to the sum of those of electrons in the conduction band EC and in the acceptor level EA : p n nA n Similar to the intrinsic case, E p N V f p 0 N V exp F kBT Eg EF n N C f e Eg N C exp k BT Assuming numbers of neutral acceptors are NA, NA E E F 1 + 2exp A k T B For EA - EF > kBT, n A N A E Eg EF F N V exp N C exp N A kBT kBT nA nA p valence band EC (Eg) EF EA EV (0) Carrier Number Density of an Extrinsic Semiconductor (Cont'd) At low temperature, one can assume p >> n, p nA As nA is very small, EA > EF E E NA F nA exp A 2 k BT E N E E F A F N V exp exp A k T 2 k T B B E E NA F exp exp A 2N V kBT 2kBT k T 2N E EF B ln V A 2 NA 2 n By substituting N V N VpT nA p valence band 32 kBT 2N Vp 3 2 EA EF ln T 2 N A 2 E For T ~0, EF A 2 At high temperature, one can assume n >> nA, p n Similar to the intrinsic case, for me = mp * *, EF Eg 2 EC (Eg) EA EF EV (0) Temperature Dependence of an Extrinsic Semiconductor Eg 2kB EA 2k B * H. Ibach and H. Lüth, Solid-State Physics (Springer, Berlin, 2003). Semiconductor Junctions Work function : Current density of thermoelectrons : vacuum level J AT exp k T B 2 3s 2p Richardson-Dushman equation A : Richardson constant (~120 Acm 2/K) 2s Metal - metal junction : EFA A barrier A + - + + - B vacuum level A - B : contact potential EFB =FAE= - FB EFB E FA E B EFB EFA A A - B B 1s Na 11+ EF Metal - Semiconductor Junction - n-Type Metal - n-type semiconductor junction : vacuum level S M S : electron affinity EC : conduction band ED : donor level EFS EFM M n-S EV : valence band depletion layer qVd = M - S : Schottky barrier height M - S EFM M - ++ ++ - EC ED EFS n-S EV * http://www.dpg-physik.de/ Metal - Semiconductor Junction - p-Type Metal - p-type semiconductor junction : vacuum level S : electron affinity M S EFM M EC p-S EFS EA : acceptor level EV depletion layer EC S - M EFM M + + + + qVd = S - M p-S EFS EA EV Einstein Relationship At the equillibrium state, Numbers of electrons diffuses towards -x direction are De dn dx EC ED EF (-x direction) (n : electron number density, De : diffusion coefficient) Drift velocity of electrons with mobility e under E is v d eE Numbers of electrons travel towards +x direction under E are nv d e nE (+x direction) As E is generated by the gradient of EC, E is along -x and vd is +x. e nE De dn 0 dx (equillibrium state) Assuming EV = 0, electron number density is defined as E E F n N e exp C k BT EV x Einstein Relationship (Cont'd) Now, an electric field E produces voltage VCF = VC - VF EC EF qVCF qVC VF E dVCF 1 d EC EF dx q dx Accordingly, d EC EF dn dn 1 n qE dx d EC EF dx k BT enE De De e nqE kBT kBT q Einstein relationship Therefore, a current density Jn can be calculated as qn dV dn dn J n q e nE qDe x qDe dx kBT dx dx qV V qV d J n Bexp exp d kBT kBT Rectification in a Schottky Junction By applying a bias voltage V onto a metal - n-type semiconductor junction : q(Vd - V) M - S forward bias J Foward qV V qV d J MS JSM Bexp exp d kBT kBT qV J 0exp kBT q(Vd - V) M - S qV 1 J 0 exp k T B J J Foward J Reverse J 0 V : large qV J 0 exp k T B V qV V qV d J MS JSM Bexp exp d kBT kBT qV J 0exp 1 J 0 V : large kBT reverse bias J Reverse * H. Ibach and H. Lüth, Solid-State Physics (Springer, Berlin, 2003). pn Junction Fabrication method : • Annealing method : n-type : Spread P2O5 onto a Si substrate and anneal in forming gas. p-type : Spread B2O3 onto a Si substrate and anneal in forming gas. • Epitaxy method (“epi” = on + “taxy” = arrangement) : Oriented overgrowth n-type : thermal deformation of SiH4 (+ PCl3) on a Si substrate p-type : thermal deformation of SiH4 (+ BBr3) on a Si substrate pn Junction Interface By connecting p- and n-type semiconductors, p : Most of accepters become - ions Holes are excited in EV. n : Most of donors become + ions Electrons are excited in EC. Fermi level EF needs to be connected. qVd Built-in potential : qVd = Efn - EFp Electron currents balances pn=np Majority carriers : p : holes, n : electrons Minority carriers : p : electrons, p : holes * H. Ibach and H. Lüth, Solid-State Physics (Springer, Berlin, 2003). Rectification in a pn Junction Under an electrical field E, hole electron drift current forward bias hole Current rectification : very small drift current reverse bias * M. Sakata, Solid State Physics (Baifukan, Tokyo, 1989). ** H. Ibach and H. Lüth, Solid-State Physics (Springer, Berlin, 2003).