Research Program 2

Download Report

Transcript Research Program 2

UPOL 22/2/12
Projekt:
Výzkum a vývoj femtosekundových laserových systému a pokročilých optických technologií
(CZ.1.07/2.3.00/20.0091)
Science Case at
ELI-Beamlines
Daniele Margarone
ELI-Beamlines Project
Institute of Physics of the Czech Academy of Science
PALS Centre
Prague, Czech Republic
Science Case at ELI-Beamlines
 Research Program 1
Laser generating rep-rate ultrashort pulses & multi-PW peak powers
 Research Program 2
X-ray sources driven by rep-rate ultrashort laser pulses
 Research Program 3
Particle Acceleration by lasers
 Research Program 4
Applications in molecular, biomedical and material sciences
 Research Program 5
Laser plasma and high-energy-density physics
 Research Program 6
High-field physics and theory
ELI-Beamlines
Scientific Team
RA1
Lasers
B. Rus
RA2-RA6
G. Korn
RA2
X-ray sources
driven by
ultrashort
laser pulses
S. Sebban
RA3
Particle
acceleration by
lasers
D. Margarone
RA4
RA5
RA6
Applications in
molecular,
biomedical, and
material
sciences
Plasma and
high energy
density physics
Exotic physics
and theory
L. Juha
J. Limpouch
K. Rohlena
Science Case at ELI-Beamlines
Protons, Ions, Electrons, X-rays and g-rays










Unique features
relativistic ultrashort and synchronized high-intensity particles,
lasers and X-ray beams
high repetition rate
unprecedented energy range
high brightness
excellent shot-to-shot reproducibility (laser-diode and thin-disk
technology)
Potential applications, business and technology transfer
accelerator science (new and compact approaches, e.g. Compact
FEL)
time-resolved pump-probe experiments (fusion plasmas, warm
dense matter, laboratory astrophysics, etc.)
medicine (hadrontherapy and tomography of tumors)
bio-chemistry (fast transient dynamics)
security (non-destructive material inspection)
Target Areas
Potential future 3D
diffractive X-ray
imaging of complex
molecules
Potential future laser
driven FEL/XFEL
Potential future laser
driven hadron-therapy
• RPA (laser-target
optimization)
- max. energy increase
(H+/Cn+)
- pencil ion beam
- variable ion energy
• TNSA (ion beam handling)
- ion beam transport
- electromagnetic selection
- magnetic lens focusing
• radiobiological dosimetry
- dose absorption optimization
- real-time monitoring
- adapted treatment planning
- biological cell irradiation
• nano/micro
structured
• submicro-droplets
• H-enriched
• clusters/mass-limited
• double-layer
• RPA scheme
• TNSA scheme
• ion diagnostics
RA3
• laser-driven electron
acceleration
- self guiding (gas target)
- external guiding (gas target)
- solid targets
• LUX, FEL & XFEL
• neutrons: DD, DT, (p, n) and (g, n)
- single-target scheme
- catcher-target scheme
• g-rays from accelerated e- beams
• e-e+ pairs from:
- accelerated e- beams (catcher target)
- “hot electrons” in solid targets
Particle
Acceleration
• Shielding optimization
• Radiation damaging
• Non linear effects
- self focusing
- filamentation
- transient magnetic fields
(astrophys.)
- parametric instabilities
• Warm Dense Matter (WDM)
• Stopping power of
protons/ions in:
- plasmas
- WDM
• 3D proton beam
probing
•X-ray probing
•optical interferometry
RA5
Plasma & High
En. Dens. Phys.
• probing of ultraintense
electric fields in
wakefield
• laser channeling in low
density plasmas
• advanced targets
Laser-driven x-rays: several approaches
Harmonics (solid)
K-alpha emission
Pump
Laser
Prepulse
Harmonics (gas)
Solid
target
K-alpha
Probe
laser
Plasma based x-ray lasers
X-rays from relativistic e-beams
K-alpha emission : easy and ultrafast x-ray source
- Monochromatic
- Fully divergent
- Duration 100 fs
- KHz rep. rate
- Flux : 1e9 ph/shot
Main limitations : tunability, polychromaticity, divergence
Harmonics from solid target plasma
Betatron radiation
Velocity
Acceleration
X-rays from relativistic e-beams
Radiated energy
Rc
.β
Electron
β
X-rays from relativistic e-beams
We need relativistic electrons
undergoing oscillations
From projection images to
(almost) 3d structures
3 D diffractive imaging using synchronized ELI x-ray pulses
Timing synchronization of 30 fs should allow to go for µm samples diffraction
Explosion happens over many ps (Hajdu et al.)
Single- particle diffraction imaging of
biological particles without crystallization
Kirz,Nature Physics 2, 799 - 800 (2006)
Bright fs sources for applications
Ablation
Bio structures, damage
Norm. integr. intensity
Phase transitions
1.05
1.00
.
0.95
0.90
0.85
0.80
-1
0
1
2
3
Delay (ps)
4
Magnetism
X-ray microscopy
5
6
Atomic physics
Plasma diagnostics
Warm
dense
matter
Laser-driven Electron Acceleration
C. Joshi, Scientific America, 2006
Envisioned electron beams at ELI-Bamlines
 50 J beamlines (10 Hz)
 Bubble regime (high divergence beam)
• Laser parameters: EL=50J, tL=25fs, f=23mm, a0=35
• Plasma parameters: nP=1.8x1019cm-3
• Electron beam parameters: Eel= 1.5 GeV, qel= 6.2 nC
Blow-out regime/self-injection (pencil beam)
• Laser parameters: EL=50J, tL=72fs, f=33mm, a0=5
• Plasma parameters: nP=5.3x1017cm-3, Lacc=5.6cm
• Electron beam parameters: Eel= 4.4 GeV, qel= 1.2 nC
 Blow-out regime/external-injection (pencil beam)
• Laser parameters: EL=50J, tL=134fs, f=60mm, a0=2
• Plasma parameters: nP=6.3x1016cm-3, Lacc=8.8cm
• Electron beam parameters: Eel= 14.9 GeV, qel= 0.85 nC (?)
 1.3 kJ beamlines (0.016 Hz)
 Blow-out regime/self-injection (ELI end-stage)
• Laser parameters: EL=1.3kJ, tL=215fs, f=97mm, a0=5
• Plasma parameters: nP=6.1x1016cm-3, Lacc=1.5m
• Electron beam parameters: Eel= 39 GeV, qel= 3.4 nC
 Blow-out regime/external-injection
• Laser parameters: EL=1.3kJ, tL=395fs, f=178mm, a0=2
• Plasma parameters: nP=7.1x1015cm-3, Lacc=22.9m !!! NO
• Electron beam parameters: Eel= 131 GeV, qel= 2.5 nC (?)
Scaling laws:
S. Gordienko and A. Pukhov, Phys. Plasmas 12 (2005) 043109
W. Lu et al., Phys. Rev.Spec.Top.-Accelerators and Beams 10 (2007) 061301
OSIRIS simulations:
L. O. Silva, ELI Scientific Challenges, April 26 2010
Blow-out regime
Laser parameters
Plasma parameters
Electron beam parameters
19
Laser-driven Ion Acceleration
Photons
Non
relativistic
protons
C
Vp ~0
Ep ~ I1/2
TNSA
Photons
Vp ~C
Ep ~ I
Relativistic
protons
RPA (at
C
very high
intensitíes, light
pressure accelerates)
TNSA
TNSA
(Target Normal Sheath Acceleration)
 high laser contrast (main/pedestal)
 short laser pulse (10s fs – few ps)
 still occurring when the pre-plasma is “localized”
at the target front-side
 higher energy gain in metals (returning electron
current for the recirculations of “hot electrons”).
Ponderomotive Acceleration
(Sweeping potential at the laser pulse front)
 low laser contrast (dense pre-plasma)
 long laser pulse (10s ps – ns)
 long pre-plasma length (100s mm – mm)
 high laser absorption in the pre-plasma
 almost no laser interaction with the solid target
Y. Sentoku et al., Phys. Plasm. 10 (2003) 2009
RPA (Radiation Pressure Acceleration)
Courtesy of S. Bulanov
Towards Quark-Gluon Plasma
Courtesy of S. Bulanov
Records in laser-driven particle acceleration
Protons
R.A. Snavely et al., Phys. Rev. Lett. 85 (2000) 2945
S.A. Gaillard et al., “65+ MeV protons from short-pulse-laser
micro-cone-target interactions”, Bull. Am. Phys. Soc. G06.3
(2009) (only 10% energy increment )
Electrons
W.P. Leemans et al., Nature Phys. 2 (2006) 696
A technological progress is needed: towards
higher laser intensities!!!
24
Beyond the energy frontier...
Maximum Proton Energy [MeV]
10000
30-60 fs
100-150 fs
0.3-1 ps
simulations
1000
100
10
1
ELI intensity
regime
NOVA PW
2 1/2
(I )
LULI
RAL PW
Los Alamos
Janusp
CUOS
MBI
Osaka
Saclay,
LOA,
MBI,
APRI
MPQ
Tokyo,
Kyoto
2
I
TNSA
RPA
0,1
15
16
17
18
19
20
21
22
23
24
25
10 10 10 10 10 10 10 10 10 10 10
K. Zeil et al., New Journal of Physics 12 (2010) 045015
2
2
2
I [W mm /cm ]
J. Fuchs et al., C. R. Physique 10 (2009) 176 and references therein
25
Envisioned proton beams
 2 PW beamlines (10 Hz)
 50 J, 25 fs, 1021 W/cm2, RPA, Epeak = 200 MeV, h = 65%, Np 1012, div.: 4°, quasi-monoenergetic
References:
Matt Zepf, ELI-Beamlines Sci. Chall. Workshop, April 26th, 2010
 10 PW beamlines (0.016 Hz)
 1.3 kJ, 130 fs, 1023 W/cm2, ECut-off = 2 GeV, h = 50%, Np 2x1012, div. 10°
 2x1.3 kJ, 130 fs, 20 PW, 2x1023 W/cm2, ECut-off = 2 - 2.5 GeV
 5x1.3 kJ, 130 fs, 50 PW, 5x1023 W/cm2, ECut-off = 4 GeV (ELI end-stage)
References:
B. Qiao et al, PRL 102 (2009)145002
J. Davis and G.M. Petrov Physics of Plasmas 16, 023105 (2009)
ELI White-book, OSIRIS simulations (by Luis Cardoso)
2x1022W/cm2
6x1022W/cm2
2x1021W/cm2
B. Qiao et al, PRL 102, 145002 (2009)
26
Basic experiment at E6a (high rep. rate)
TNSA/RPA: PL = 2 PW (10 Hz), IL 1022 W/cm2 , Emax = 200 MeV, Np 1012
Legend
OAP: off-axis-parabola; T: primary target; T1/T2: secondary target (proton radiography); RCF: radiochromic film; FM:
flat mirror; EMQ: electromagnetic quadrupole optics (1.5 Tesla), TP spectrometer (B=1.5 T, E=10-50 kV); D: detector
(film/semiconductor); V: gate valve, LS: local shielding (g-rays/neutrons)
Challenges & advanced source use
1.
2.
3.
4.
5.
Proton/ion acceleration
Improving the beam quality in terms of divergence and monochromaticity
Increasing the beam stability (energy distribution, particle numbers, emittance)
Optimizing the laser to ion conversion efficiency
Use of ultrathin targets (very high contrast and circular polarization are needed)
Beam handling & selection (either through target engineering or conventional solutions, e.g. microlenses or magnetic quadrupoles)




Electron acceleration
External injection: development of effective electron beam loading techniques
Use of an all-optical injection scheme (colliding pulses)
Use of a tailored longitudinal plasma density profile
Development of a multiple stage acceleration setup including laser and electron beam optics
(synchronization of the laser and electron beams in several tens of meters is necessary!)




Diagnostic requirements and development
Strong energy increase of the particles produced at extreme laser intensities (particles whose energies
will range from MeV to tens of GeV)
Huge particle number per shot per second (prompt current)
Energy and beam spreading of produced particles (no unique detector can be used)
Huge EMP
28
Laser-driven hadron-therapy (ELI-MED)
Courtesy of J. Wilkens
Courtesy of
J. Wilkens
Courtesy of
J. Wilkens
Courtesy of
J. Wilkens
Courtesy of
J. Wilkens
Courtesy of
J. Wilkens
Courtesy of
J. Wilkens
One of the big Challenges
in Physics would be to built
a laser powerful enough to
breakdown vacuum.
Survey by “Science” 2005
EQ=mpc2
Ultra-relativistic
intensity is
defined with respect to
the proton
EQ=mpc2,
intensity~1024W/cm2
Inverse Compton Scattering
The Doppler energy upshift allows one to reach high photon
energies, e.g. 100 MeV g-rays with a 10-GeV electron beam.
ELI White Book
530 pages of Science, technology and
implementation strategies of ELI
It’s time to wake up!!!
Thank you for your attention and invitation!