Transcript andrzej
Mixed-valence vanadates at high-pressures Andrzej Grzechnik Institute of Crystallography, RWTH Aachen University Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at atmospheric pressure P.Y. Zavalij and M.S. Whittingham, Acta Cryst. B55, 627 (1999) Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at atmospheric pressure ► Electrochemistry ► Catalysis ► Correlated electron systems Spin-Peierls transitions Spin gap formation Charge, spin & orbital ordering Metal-insulator transitions ► Magnetism P.Y. Zavalij and M.S. Whittingham, Acta Cryst. B55, 627 (1999) Rutile type Binary vanadium oxides Wadsley phases: VnO2n+1 (n = 3, 4, 6) VO2 (P42/mnm) the VO2 – V2O5 system V2O5 (Pmmn) Rutile type Binary vanadium oxides Wadsley phases: VnO2n+1 (n = 3, 4, 6) VO2 (P42/mnm) the VO2 – V2O5 system V2O5 (Pmmn) n=3 V3O7 (C2/c) An insulator and a uniaxial ferromagnet: H. Nishihara, Y. Ueda, K. Kosuge, H. Yasuoka, S. Kachi, J. Phys. Soc. Jpn. 47, 790 (1979). Rutile type Binary vanadium oxides Wadsley phases: VnO2n+1 (n = 3, 4, 6) VO2 (P42/mnm) the VO2 – V2O5 system V2O5 (Pmmn) n=4 V4O9 (Pnma) An antiferromagnet: S. Yamazaki, C. Li, K. Ohoyama, M. Nishi, M. Ichihara, H. Ueda, Y. Ueda, J. Solid State Chem. 183, 1496 (2010). Rutile type Binary vanadium oxides Wadsley phases: VnO2n+1 (n = 3, 4, 6) VO2 (P42/mnm) the VO2 – V2O5 system V2O5 (Pmmn) n=6 V6O13 (Pnma) A metal-insulator phase transition followed by an antiferromagnetic transition: Y. Ueda, K. Kosuge, S. Kachi, Mater. Res. Bull. 11, 293 (1976). Corundum type Rutile type Binary vanadium oxides Magnéli phases: VnO2n-1 (n = 3÷9) V2O3 (R-3c) the V2O3 – VO2 system VO2 (P42/mnm) V3O5 (Cc) V8O15 (P-1) Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at high pressures? Vanadium coordination polyhedra in vanadates in relation to the oxidation states of vanadium at high pressures P An interplay of the effects of a chemical composition and of high pressure on the structural stability and physical properties of mixed valence vanadates Ca3V2O8 at high pressures palmierite type R3c Ca3V2O8 at high pressures Onset of amorphization at about 10 GPa A. Grzechnik, Chem. Mater. 10, 1034 (1998) A. Grzechnik, J. Solid State Chem. 139, 161 (1998) palmierite type R3c Ca3V2O8 at high pressures HP-HT synthesis of a powder material 11 GPa, 1373 K C2/m A. Grzechnik, Solid State Sciences 4, 523 (2002) palmierite type R3c V2O5 and AxV2O5 (A = Li, Na, Cs, Ag, Mg, Ca, …; x ≤ 1) V2O5 (Pmmn) NaV2O5 (Pmmn) V2O5 and AxV2O5 (A = Li, Na, Cs, Ag, Mg, Ca, …; x ≤ 1) NaV2O5 (Pmmn) b-Na0.33V2O5 (C2/m) Wadsley-type bronze Pressure-induced superconductivity in b-Na0.33V2O5: TSC = 8 K, P = 8 GPa Phase transition from the charge ordered to the superconducting phase at 8 K and 8 GPa? T. Yamauchi, Y. Ueda, N. Môri, Phys. Rev. Lett. 89, 057002 (2002) Local structures in high-pressure phases of V2O5 A. Grzechnik, Chem. Mater. 10, 2507 (1998) I. Loa, A. Grzechnik, U. Schwarz, K. Syassen, M. Hanfland, R.K. Kremer, J. Alloys Comp. 317–318, 103 (2001) High-pressure phases of V2O5 and NaV2O5 from powder diffraction? A. Grzechnik, Chem. Mater. 10, 2507 (1998) I. Loa, A. Grzechnik, U. Schwarz, K. Syassen, M. Hanfland, R.K. Kremer, J. Alloys Comp. 317–318, 103 (2001) High-pressure phases of b-Na0.33V2O5 from powder diffraction? High-pressure synchrotron powder diffraction at room temperature K. Rabia, A. Pashkin, S. Frank, G. Obermeier, S. Horn, M. Hanfland, C.A. Kuntscher, High Press. Res. 29, 504 (2009) (NH4)2V3O8 fresnoite Ambient pressure V4+ V5+ P4bm Synchrotron single-crystal diffraction (D3/Hasylab) A. Grzechnik, T.Z. Ren, J.M. Posse, K. Friese, Dalton Trans. 40, 4572 (2011) 6.90 GPa (NH4)2V3O8 fresnoite Ambient pressure Synchrotron single-crystal diffraction (D3/Hasylab) A. Grzechnik, T.Z. Ren, J.M. Posse, K. Friese, Dalton Trans. 40, 4572 (2011) Ambient 6.90 GPa V4+ V5+ P4bm No charge transfer P4/mbm MV6O11 compounds NaV6O11: A. Grzechnik, Y. Kanke, K. Friese, J. Phys.: Condens. Matter 20, 285208 (2008) BaV6O11: K. Friese, Y. Kanke, A. Grzechnik, Acta Cryst. B65, 326 (2009) (M = Na, K, Sr, Ba, Pb) P63/mmc M+V33+V34+O11 or M2+V43+V24+O11 V(1)O6 M V(2)O6 V(1)O6 regular Kagomé lattice V(3)O5 Structures related to magnetoplumbite Pb(Fe3+,Mn3+)12O19 64.2 K 80 K TH = 243 K Phase transitions in NaV6O11: low T ║ Na+ Spontaneous magnetization with the easy axis II to [001] V4+(2)O6 V3+(1)O6 V4+(3)O5 ► A Curie-Weiss paramagnetic metal at ambient conditions ► Spontaneous magnetization is suppressed at high pressures (Tc ↓ P↑) while the TH temperature increases on compression (*) and is expected to be at 1.15 GPa and room T (*) T. Naka, T. Matsumoto, Y. Kanke, K. Murata, Physica B 206/207, 853 (1995) Single-crystal growth at 6 GPa and 1473-2323 K Yasushi Kanke (NIMS, Tsukuba) Phase transitions in BaV6O11: low T Ba2+ V(2)O6 V(1)O6 V(3)O5 Single-crystal growth at 6 GPa and 1473-2323 K Yasushi Kanke (NIMS, Tsukuba) Phase transitions in BaV6O11: low T P63mc ↔ P63/mmc 250 K Ba2+ 115 K 75 K V(2)O6 V(1)O6 Specific heat V(3)O5 Single-crystal growth at 6 GPa and 1473-2323 K Yasushi Kanke (NIMS, Tsukuba) Phase transitions in BaV6O11: low T P63mc ↔ P63/mmc 250 K Ba2+ 115 K 75 K V(2)O6 No structural phase transitions (no Cmc21 phase) Specific heat V(1)O6 V(3)O5 Single-crystal growth at 6 GPa and 1473-2323 K Yasushi Kanke (NIMS, Tsukuba) Phase transitions in BaV6O11: low T P63mc ↔ P63/mmc 250 K 115 K 115 K 75 K 75 K No structural phase transitions (no Cmc21 phase) Specific heat Magnetic susceptibility Phase transitions in NaV6O11and BaV6O11: breaking the Kagomé lattice Phase transitions in NaV6O11and BaV6O11: breaking the Kagomé lattice 5 .8 G P a 3 .0 5 3 .0 5 80 K 3 .0 0 8 5 .5 K 4 .2 G P a 3 .0 0 0 .4 9 G P a 2 .6 G P a 230 K V (1 ) - V (1 ) d is ta n c e s [Å ] 2 .9 5 2 .9 5 1 .2 G P a 2 .9 0 2 .9 0 250 K 290K 2 .8 5 2 .8 5 2 .8 0 2 .8 0 2 .7 5 2 .7 5 2 .7 0 2 .7 0 2 .6 5 2 .6 5 NaV6O11 2 .6 0 360 362 364 366 368 370 3 U n it-c e ll vo lu m e [Å ] 372 374 376 378 380 382 384 3 U n it-c e ll vo lu m e [Å ] 386 2 .6 0 388 Phase transitions in NaV6O11and BaV6O11: breaking the Kagomé lattice 5 .8 G P a 3 .0 5 3 .0 5 80 K 3 .0 0 8 5 .5 K 4 .2 G P a 3 .0 0 0 .4 9 G P a 2 .6 G P a V (1 ) - V (1 ) d is ta n c e s [Å ] 230 K 290 K 2 .9 5 2 .9 5 1 .2 G P a 2 .9 0 2 .9 0 250 K 290K 2 .8 5 2 .8 5 2 .8 0 2 .8 0 2.86 Å 2 .7 5 2 .7 5 2 .7 0 2 .7 0 2 .6 5 2 .6 5 NaV6O11 2 .6 0 360 362 364 366 368 370 3 U n it-c e ll vo lu m e [Å ] 372 374 376 378 380 382 384 3 U n it-c e ll vo lu m e [Å ] 386 2 .6 0 388 V(1) V(2) Phase transitions in NaV6O11and BaV6O11: breaking the Kagomé lattice 5 .8 G P a 3 .0 5 3 .0 5 80 K 3 .0 0 8 5 .5 K 4 .2 G P a 3 .0 0 0 .4 9 G P a 2 .6 G P a V (1 ) - V (1 ) d is ta n c e s [Å ] 230 K 290 K 2 .9 5 2 .9 5 1 .2 G P a 2 .9 0 2 .9 0 250 K 290K 2 .8 5 2 .8 5 2 .8 0 2 .8 0 2.86 Å 2 .7 5 2 .7 5 85.5 K 2 .7 0 2 .7 0 2 .6 5 2 .6 5 NaV6O11 2 .6 0 360 362 364 366 368 370 3 U n it-c e ll vo lu m e [Å ] 372 374 376 378 380 382 384 3 2.72UÅn it-c e ll vo 2.99luÅm e [Å ] 386 2 .6 0 388 V(1) V(2) Phase transitions in NaV6O11and BaV6O11: breaking the Kagomé lattice 5 .8 G P a 3 .0 5 3 .0 5 80 K 3 .0 0 8 5 .5 K 4 .2 G P a 2 .6 G P a 230 K 290 K 2 .9 5 V (1 ) - V (1 ) d is ta n c e s [Å ] V(1) V(2) 3 .0 0 0 .4 9 G P a 2 .9 5 1 .2 G P a 2 .9 0 2 .9 0 250 K 290K 2 .8 5 2 .8 5 2 .8 0 2 .8 0 2.86 Å 2 .7 5 2 .7 5 85.5 K 2 .7 0 2 .7 0 2 .6 5 2 .6 5 4.2 GPa NaV6O11 2 .6 0 360 362 364 366 368 370 3 U n it-c e ll vo lu m e [Å ] 372 374 376 378 380 382 384 3 386 2.72UÅn it-c e ll vo 2.99luÅm e [Å3.01 ] Å 2 .6 0 388 2.66 Å Phase transitions in NaV6O11and BaV6O11: breaking the Kagomé lattice 5 .8 G P a 3 .0 5 3 .0 5 80 K 3 .0 0 8 5 .5 K 4 .2 G P a 3 .0 0 0 .4 9 G P a 2 .6 G P a 230 K V (1 ) - V (1 ) d is ta n c e s [Å ] 2 .9 5 2 .9 5 1 .2 G P a 2 .9 0 2 .9 0 250 K 290K 2 .8 5 2 .8 5 2 .8 0 2 .8 0 2 .7 5 2 .7 5 2 .7 0 2 .7 0 2 .6 5 2 .6 5 NaV6O11 2 .6 0 360 362 364 366 368 370 3 U n it-c e ll vo lu m e [Å ] BaV6O11 372 374 376 378 380 382 384 3 U n it-c e ll vo lu m e [Å ] 386 2 .6 0 388 Phase transitions in NaV6O11and BaV6O11: breaking the Kagomé lattice NaV6O11 Hardly any bond valence changes at V sites M BaV6O11 Bond valence changes at all V sites Charge transfer V(2)O6 V(1)O6 V(3)O5 Mixed-valence vanadates MV4O8 (M = Y, Yb, Lu) 3V3+ + 1V4+ K. Friese, Y. Kanke, A.N. Fitch, A. Grzechnik, Chem. Mater. 19, 4882 (2007) K. Friese, Y. Kanke, A.N. Fitch, W. Morgenroth, A. Grzechnik, Acta Cryst. B64, 652 (2008) →b Fe(1)O6 Fe(2)O6 Ca ↓a →b Pnam (Z = 4) Orthorhombic a = 9.230 Å Pnam b = 10.705 Å 9.230 ca= = 3.024 Å Å ↓c b=10.705 Å c= 3.024 Å Calcium ferrite type structure (CaFe2O4) →b V(1)O6 V(3)O6 V(2)O6 V(4)O6 Yb ↓a →b P 1 21/n 1 (Z = 4) a = 9.0648(3) Å b = 10.6215(4) Å c = 5.7607(1) Å b = 90.184(3)° ↓c a-YbV4O8 →b V(1)O6 V(3)O6 V(2)O6 V(4)O6 Yb ↓a →b A 21/d 1 1 (Z = 8) a = 9.030(5) Å b = 21.44(3) Å c = 5.752(2) Å a = 89.911(3)° ↓c β-YbV4O8 Polytypism, twinning, and composite crystals in MV4O8 (M = Y, Yb, Lu) Average structure Pnam P121/n1 α-phase A21/d11 β-phase Phase transitions in MV4O8 (M = Y, Yb, Lu) at low temperatures a-YV4O8 b-YV4O8 (a,b)-YV4O8 Magnetic susceptibility Q Specific heat Domain size effects: a ≈ 40-50 Å, b ≈ 500 Å Guinier simulation of synchrotron powder diffraction data for b-YbV4O8 A21/d11 (Z = 4) β-Phase 180-185 K A21/d11 (Z = 4) β’-Phase ID31/ESRF Isostructural phase transitions in a-YbV4O8 and b-YbV4O8 due to charge ordering at low temperatures (single-crystal data from ANKA & DESY) 2,02 2,01 V1 V2 V3 V4 2,00 1,99 1,98 1,97 V1 V2 V3 V4 α-phase 1,96 1,95 0 50 100 150 200 250 average V-O distances in [Å] average V-O distances in [Å] 2,02 2,01 2,00 V1 V2 V3 V4 1,99 1,98 β-phase 1,97 1,96 1,95 100 300 Temperature [K] 200 250 300 Temperature [K] 4,0 4,0 3,8 1003,6 150 200 250 V1 300 V2 3+ V3 V4 4+ V2 3,4 Temperatur [K] V1 3+ V2 V3 V4 4+ V2 3,2 3,0 2,8 3,8 bond valence sums [v.u.] bond valence sums [v.u.] 150 V1 3+ V2 V3 V4 4+ V2 3,6 3,4 3,2 3,0 2,8 0 50 100 150 200 Temperature [K] Temperature [K] 250 300 100 te 150 200 temperature [K] 250 Temperature [K] 300 High-pressure behaviour of a-YbV4O8 and b-YbV4O8 polytypes? P121/n1, Z =4 A21/d11, Z =8 High-pressure behaviour of a-YbV4O8 and b-YbV4O8 polytypes? Intensity (relative units) P121/n1, Z =4 2 3 4 A21/d11, Z =8 (DAC) SNBL/ESRF, PETRA III (DAC) SNBL/ESRF, PETRA III (0.3 mm capillary) ID31/ESRF (0.3 mm capillary) ID31/ESRF 5 6 d-spacing (Å) a-YbV4O8 seems to be stable at least to 16 GPa 7 2 3 4 5 6 d-spacing (Å) b-YbV4O8 seems to be stable at least to 10 GPa 7 The future: an interplay of the effects of a chemical composition and of high pressure on the structural stability and physical properties of mixed valence vanadates ► In situ high-pressure x-ray studies (diamond anvil cells and multi-anvils) Phase transitions P-T phase diagrams Chemical reactions ► High-pressure synthesis ► Physical properties under high pressures Magnetism Transport properties Collaborators Karen Friese (JCNS, Jülich) Yasushi Kanke (NIMS, Tsukuba) Oleg Petracic (JCNS, Jülich) Georg Roth (RWTH Aachen University)