Transcript Slide 1
PSpiceを活用した太陽光システムシミュレーション 株式会社ビー・テクノロジー http://www.bee-tech.com/ [email protected] Copyright (C) Bee Technologies Inc. 2010 1 EDA Designer Technology of Simulation Device Model Copyright (C) Bee Technologies Inc. 2010 2 モデル デザインキット 回路方式のテンプレート 回路解析シミュレータ PSpice (ABMライブラリーが豊富) ABM=Analog Behavior Model Copyright (C) Bee Technologies Inc. 2010 3 スパイス・パーク http://www.spicepark.com/ 55種類のデバイス、3,316モデル(2010年6月30日現在)をご提供中。 現在、グローバル版スパイス・パークを準備中。 Copyright (C) Bee Technologies Inc. 2010 4 バッテリーのスパイスモデルの推移 放電特性 付加抵抗 一定 放電特性 付加抵抗 可変 充電特性 + 放電特性 リチウムイオン電池 ニッケル水素電池 鉛蓄電池 Copyright (C) Bee Technologies Inc. 2010 5 リチウムイオン電池の充放電特性シミュレーションのセミナー及びデモは、 2010年7月28日(水曜日)東京 2010年7月29日(木曜日)大阪 で開催致します。[email protected]までお問い合わせ下さい。 Copyright (C) Bee Technologies Inc. 2010 6 Design Kit PV Li-Ion Battery System Copyright (C) Bee Technologies Inc. 2010 7 1.1 Lithium-Ion Batteries Pack Specification BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001) • Capacity............................65[Wh], 4400[mAh] (Approximately) • Rated Current....................3[A] • Input Voltage.......................20.5 [Vdc] • Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells ) • Charging time......................5[hours] (Approximately) Copyright (C) Bee Technologies Inc. 2010 8 1.2 Discharge Time Characteristics 18V D1 DMOD PARAMETERS: 16V Voch 16.8Vdc rate = 1 CAh = 4400m 0 Hi 0.2C ( 880 mA ) 14V 0.5C ( 2200 mA ) IN+ OUT+ INOUT0 G1 GVALUE limit(V(%IN+, %IN-)/0.01, 0, rate*CAh ) 1C ( 4400 mA ) 12V 0 Batteries Pack Model Parameters 10V 8V 0s 1.0s V(Hi) 2.0s 3.0s 4.0s 5.0s 6.0s C1 1n + - 0 U1 PBT-BAT-0001 TSCALE = 3600 SOC1 = 100 TSCALE=3600 means time Scale (Simulation time : Real time) is 1:3600 NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Time Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA) Copyright (C) Bee Technologies Inc. 2010 9 1.3 Single Cell Discharge Characteristics Single cell Measurement Simulation 4.50 0.2C ( 880mA ) 0.5C ( 2200mA ) 1.0C ( 4400mA ) VOLTAGE [V] 4.00 3.50 3.00 2.50 2.00 100 90 80 70 60 50 40 30 20 10 0 -10 SOC [%] • Single cell discharge characteristics are compared between measurement data and simulation data. Copyright (C) Bee Technologies Inc. 2010 10 1.4 Charge Time Characteristics SOC [%] 100V rate = 0.2 CAh = 4400m 80V 14V 3.0A 12V 2.0A 10V 1.0A 8V >> 0A 0s 1 0 OUT+ OUTIN+ IN- 20V 4.0A Voch 16.8Vdc Hi 40V 16V DMOD G1 GVALUE Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh ) 60V SEL>> 0V Vbatt [V] ICharge [A] 18V 5.0A 1 2 D1 PARAMETERS: C1 1n + 0 - 0 U1 PBT-BAT-0001 TSCALE = 3600 SOC1 = 0 Vin 20.5Vdc V(X_U1.SOC) 0 Batteries Pack Model Parameters NS (number of batteries in series) = 4 cells C (capacity) = 4400 mA SOC1 (initial state of charge) = 100% TSCALE (time scale) , simulation : real time 1 : 3600s or 1s : 1h Charger Adaptor 1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s V(Hi) 2 I(U1:PLUS) Time Input Voltage = 20.5 Vdc Input Current = 880 mA(max.) Copyright (C) Bee Technologies Inc. 2010 11 2.1 Solar Cells Specification BP Solar’s photovoltaic module : SX330 • Maximum power (Pmax)..............30[W] • Voltage at Pmax (Vmp).............16.8[V] • Current at Pmax (Imp)...............1.78[A] 502mm • Short-circuit current (Isc)...........1.94[A] 595mm • Open-circuit voltage(Voc)...........21.0[V] Copyright (C) Bee Technologies Inc. 2010 12 2.2 Output Characteristics vs. Incident Solar Radiation SX330 Output Characteristics vs. Incident Solar Radiation 2.5A SOL=1 + SX330 U1 SX330 SOL = 1 Current (A) 2.0A 1.5A SOL=0.5 1.0A SOL=0.16 0.5A 0A I(Isence) 40W Parameter, SOL is added as normalized incident radiation, where SOL=1 for AM1.5 conditions Power (W) SOL=1 30W 20W SOL=0.5 10W SEL>> 0W 0V SOL=0.16 5V 10V 15V I(Isence)* V(V1:+) V_V1 20V 25V 30V Voltage (V) Copyright (C) Bee Technologies Inc. 2010 13 3. Solar Cell Battery Charger • Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique. Choose the solar cell that is able to provide current at charging rate or more with the maximum power voltage 100V (Vmp) nears the batteries pack charging voltage. 80V • PBT-BAT-0001 (Li-ion batteries pack) 60V 40V – Charging time is approximately 5 hours with charging rate 0.2C or 880mA 20V – Voltage during charging with 0.2C is between 14.7 to 16.9 V 0V V(X_U1.SOC) 1 18V 2 5.0A 14.9 V 16V 4.0A 14V 3.0A 12V 2.0A 10V 1.0A 14.7 V 8V SEL>> 0A 0s 1 0.2C or 880mA 1.0s 2.0s V(Hi) 2 3.0s 4.0s 5.0s I(U1:PLUS) Time 6.0s 7.0s Copyright (C) Bee Technologies Inc. 2010 14 3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit Short circuit current ISC depends on condition: SOL Photovoltaic Module SX 330 (BP Solar) Vmp=16.8V Pmax=30W Over Voltage Protection Circuit 16.8V Clamp Circuit Lithium-Ion Batteries Pack PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh Copyright (C) Bee Technologies Inc. 2010 15 3.2 PV Li-Ion Battery Charger Circuit D1 PARAMETERS: DMOD sol = 1 Voch 16.8Vdc pv 0 Hi C1 1n + SX330 U2 SX330 SOL = {sol} 0 + - 0 U1 PBT-BAT-0001 TSCALE = 3600 SOC1 = 0 0 • Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident radiation, where SOL=1 for AM1.5 conditions. Copyright (C) Bee Technologies Inc. 2010 16 3.3 Charging Time Characteristics vs. Weather Condition 100V 80V 60V 40V sol = 1.00 sol = 0.50 sol = 0.16 20V 0V 0s 1s 2s V(X_U1.SOC) 3s 4s 5s 6s 7s 8s 9s 10s Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. Copyright (C) Bee Technologies Inc. 2010 17 3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit + Constant Current Over Voltage Protection Circuit Short circuit current ISC depends on condition: SOL Photovoltaic Module SX 330 (BP Solar) Vmp=16.8V Pmax=30W 16.8V Clamp Circuit Constant Current Control Circuit Icharge=0.2C (880mA) Copyright (C) Bee Technologies Inc. 2010 Lithium-Ion Batteries Pack PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh 18 3.5 Constant Current PV Li-Ion Battery Charger Circuit D1 PARAMETERS: PARAMETERS: sol = 1 rate = 0.2 CAh = 4400m DMOD Voch 16.8Vdc pv 0 + SX330 0 • • U2 SX330 SOL = {sol} IN+ IN- OUT+ OUT- Hi C1 1n 0 G1 GVALUE Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh) + - 0 U1 PBT-BAT-0001 TSCALE = 3600 SOC1 = 0 Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the “PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current. Copyright (C) Bee Technologies Inc. 2010 19 3.6 Charging Time Characteristics vs. Weather Condition (Constant Current) 100V 80V 60V 40V sol = 1.00 sol = 0.50 sol = 0.16 20V 0V 0s 1s 2s V(X_U1.SOC) 3s 4s 5s 6s 7s 8s 9s 10s Time • Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate current more than the constant charge rate (0.2A), battery can be fully charged in about 5 hour. Copyright (C) Bee Technologies Inc. 2010 20 4.1 Concept of Simulation PV Li-Ion Battery System in 24hr. Over Voltage Protection Circuit The model contains 24hr. solar power data (example). 16.8V Clamp Circuit Photovoltaic Module SX 330 (BP Solar) Vmp=16.8V Pmax=30W Lithium-Ion Batteries Pack PBT-BAT-0001 (BAYSUN) DC12.8~16.4V (4 cells) 4400mAh Low-Voltage Shutdown Circuit Vopen= (V) Vclose= (V) DC/DC Converter DC Load VIN=10~18V VOUT=5V VIN = 5V IIN = 1.5A Copyright (C) Bee Technologies Inc. 2010 21 4.2 Short-Circuit Current vs. Time (24hr.) The model contains 24hr. solar power data (example). 2.0A 1.6A + 1.2A SX330 U2 SX330_24H_TS3600 0.8A 0.4A 0A 0s 4s I(X_U1.I_I1) 8s 12s 16s 20s 24s Time • Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the solar power profile (example) is included to the model. Copyright (C) Bee Technologies Inc. 2010 22 4.3 PV-Battery System Simulation Circuit Solar cell model with 24hr. solar power data. pv D1 Set initial battery voltage, IC=16.4, for convergence aid. DMOD Voch 16.8Vdc 0 D2 batt DMOD + SX330 C1 100n IC = 16.4 Low-Voltage Shutdown Circuit U2 SX330_24H_TS3600 0 VON = 0.7 VOFF = 0.3 RON = 0.01 ROFF = 10MEG 0 + C3 10n S2 S Ronof f 100 Lctrl + - Conof f 1n IC = 5 0 PARAMETERS: OUT+ OUT- IN+ IN- Lclose = 15.2 - 0 U1 PBT-BAT-0001 TSCALE = 3600 SOC1 = 70 Ronof f 1 batt1 100 dchth OUT+ OUT- IN+ IN- SOC1 value is initial State Of Charge of the battery, is set as 70% of full voltage. Conof f 1 100n E2 EVALUE IF( V(lctrl) > 0.25 ,Lopen ,Lclose) Lopen = 14 Lopen value is load shutdown voltage. Lclose value is load reconnect voltage E1 EVALUE IF(V(batt1)>V(dchth),5,0) + 0 DC/DC Converter 7.5W Load (5Vx1.5A). PARAMETERS: out_dc n=1 IN Iomax G1 IN+ OUT+ INOUTGVALUE IN+ IN- OUT+ OUT- ecal_Iomax EVALUE 0 n*V(%IN+, %IN-)*I(IN)/5 OUT I1 E3 1.5Adc IN+ OUT+ OUTINEVALUE IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 ) Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) ) 0 DCDCコンバータの簡易モデル 0 Simulation at 15W load, change I1 from 1.5A to 3A DCACコンバータの簡易モデルもあります。 Copyright (C) Bee Technologies Inc. 2010 23 4.3.1 Simulation Result (SOC1=100) PV generated current 1.0A 0A PV module charge the battery I(pv) 17.5V 1 Battery voltage 2 2.0A 15.0V 0A 12.5V -2.0A Battery current >> 1 100V 75V 50V 25V 0V Battery SOC V(batt) 2 Battery supplies current when solar power drops. I(U1:PLUS) Fully charged, stop charging SOC1=100 V(X_U1.SOC) 7.5V DC output voltage 1 5.0V DC/DC input current 2.5V 0V • • • 2 600mA 500mA SEL>> 400mA 0s 1 4s V(out_dc) 2 8s I(IN) C1: IC=16.4 Run to time: 24s (24hours in real world) Step size: 0.01s Charging time 12s 16s 20s 24s Time • .Options ITL4=1000 Copyright (C) Bee Technologies Inc. 2010 24 4.3.2 Simulation Result (SOC1=70) PV generated current 1.0A 0A PV module charge the battery I(pv) 17.5V 1 Battery voltage 2 2.0A 15.0V 0A 12.5V SEL>> -2.0A Battery current V=Lopen V=Lclose (5.1850,14.000) 1 Battery SOC 7.5V DC output voltage 1 5.0V DC/DC input current 2.5V 0V • • • • 2 (7.6750,15.199) V(batt) 2 100V SOC1=70 75V 50V 25V 10.152m,69.889) 0V V(X_U1.SOC) 1.0A Battery supplies current when solar power drops. I(U1:PLUS) Fully charged, stop charging Shutdown 0.5A >> 0A 0s 1 Reconnect V(out_dc) 4s 2 8s I(IN) C1: IC=16.4 Run to time: 24s (24hours in real world) Step size: 0.01s SKIPBP Charging time 12s 16s 20s 24s Time • .Options ITL4=1000 Copyright (C) Bee Technologies Inc. 2010 25 4.3.3 Simulation Result (SOC1=30) PV generated current 1.0A 0A PV module charge the battery I(pv) 17.5V 1 Battery voltage 2 2.0A 15.0V 0A 12.5V >> -2.0A Battery current (7.6150,15.193) V=Lopen (1.6328,14.004) 1 V(batt) 2 V=Lclose Battery supplies current when solar power drops. I(U1:PLUS) 100V Fully charged, stop charging (12.800m,29.854) SOC1=30 Battery SOC SEL>> 0V V(X_U1.SOC) 7.5V DC output voltage 1 5.0V DC/DC input current 2.5V 0V • • • • 2 1.0A Shutdown 0.5A >> 0A 0s 1 Reconnect V(out_dc) 4s 2 I(IN) C1: IC=15 Run to time: 24s (24hours in real world) Step size: 0.01s Total job time = 2s 8s 12s Charging time Time • 16s 20s 24s .Options ITL4=1000 Copyright (C) Bee Technologies Inc. 2010 26 4.3.4 Simulation Result (SOC1=10) PV generated current 1.0A 0A PV module charge the battery I(pv) 17.5V 1 Battery voltage 2 2.0A 15.0V 0A 12.5V SEL>> -2.0A Battery current (7.6163,15.200) V=Lclose 1 V(batt) 2 Battery supplies current when solar power drops. I(U1:PLUS) 100V Battery SOC Fully charged, stop charging SOC1=10 0V V(X_U1.SOC) 7.5V DC output voltage 1 5.0V DC/DC input current 2.5V 0V • • • • 2 1.0A 0.5A >> 0A 0s 1 Shutdown Reconnect V(out_dc) 4s 2 I(IN) C1: IC=14.4 Run to time: 24s (24hours in real world) Step size: 0.01s SKIPBP 8s 12s Charging time Time • • 16s 20s 24s .Options RELTOL=0.01 .Options ITL4=1000 Copyright (C) Bee Technologies Inc. 2010 27 4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load) PV generated current 1.0A 0A PV module charge the battery I(pv) 17.5V 1 Battery voltage 2 2.0A 15.0V 0A 12.5V SEL>> -2.0A Battery current 1 Battery SOC 100V 75V 50V 25V 0V 7.5V DC output voltage 1 2.0A V=Lopen V=Lopen (7.6086,15.200) (3.8973,14.000) V(batt) 2 (20.473,14.003) Battery supplies current when solar power drops. I(U1:PLUS) Fully charged, stop charging SOC1=100 V(X_U1.SOC) 5.0V DC/DC input current 2.5V 0V • • • 2 Shutdown Shutdown 1.0A >> 0A 0s 1 4s V(out_dc) 2 8s I(IN) C1: IC=16.4 Run to time: 24s (24hours in real world) Step size: 0.001s Charging time 12s 16s 20s 24s Time • .Options ITL4=1000 Copyright (C) Bee Technologies Inc. 2010 28 4.3.4 Simulation Result (Example of Conclusion) The simulation start from midnight(time=0). The system supplies DC load 7.5W. • • • • • If initial SOC is 100%, – this system will never shutdown. If initial SOC is 70%, – this system will shutdown after 5.185 hours (about 5:11AM.). – system load will reconnect again at 7:40AM (Morning). If initial SOC is 30%, – this system will shutdown after 1.633 hours (about 1:38AM.). – system load will reconnect again at 7:37AM (Morning). If initial SOC is 10%, – this system will start shutdown. – this system will reconnect again at 7:37AM (Morning). With the PV generated current profile, battery will fully charged in about 4.25 hours. Copyright (C) Bee Technologies Inc. 2010 29 4.3.4 Simulation Result (Example of Conclusion) The simulation start from midnight(time=0). The system supplies DC load 15W. • If initial SOC is 100%, – this system will shutdown after 3.897 hours (about 3:54AM.). – system load will reconnect again at 7:37AM (Morning). – this system will shutdown again at 8:28 PM (Night). • With the PV generated current profile, battery will fully charged in about 5.5 hours. Copyright (C) Bee Technologies Inc. 2010 30 Bee Technologies Group デバイスモデリング スパイス・パーク(スパイスモデル・ライブラリー) デザインキット デバイスモデリング教材 【本社】 株式会社ビー・テクノロジー 〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階 代表電話: 03-5401-3851 設立日:2002年9月10日 資本金:8,830万円 【子会社】 Bee Technologies Corporation (アメリカ) Siam Bee Technologies Co.,Ltd. (タイランド) 本ドキュメントは予告なき変更をする場合がございます。 ご了承下さい。また、本文中に登場する製品及びサービス の名称は全て関係各社または個人の各国における商標 または登録商標です。本原稿に関するお問い合わせは、 当社にご連絡下さい。 お問合わせ先) [email protected] Copyright (C) Bee Technologies Inc. 2010 31