Transcript Slide 1

PSpiceを活用した太陽光システムシミュレーション
株式会社ビー・テクノロジー
http://www.bee-tech.com/
[email protected]
Copyright (C) Bee Technologies Inc. 2010
1
EDA
Designer
Technology
of
Simulation
Device
Model
Copyright (C) Bee Technologies Inc. 2010
2
モデル
デザインキット
回路方式のテンプレート
回路解析シミュレータ
PSpice (ABMライブラリーが豊富)
ABM=Analog Behavior Model
Copyright (C) Bee Technologies Inc. 2010
3
スパイス・パーク http://www.spicepark.com/
55種類のデバイス、3,316モデル(2010年6月30日現在)をご提供中。
現在、グローバル版スパイス・パークを準備中。
Copyright (C) Bee Technologies Inc. 2010
4
バッテリーのスパイスモデルの推移
放電特性
付加抵抗
一定
放電特性
付加抵抗
可変
充電特性
+
放電特性
リチウムイオン電池
ニッケル水素電池
鉛蓄電池
Copyright (C) Bee Technologies Inc. 2010
5
リチウムイオン電池の充放電特性シミュレーションのセミナー及びデモは、
2010年7月28日(水曜日)東京
2010年7月29日(木曜日)大阪 で開催致します。[email protected]までお問い合わせ下さい。
Copyright (C) Bee Technologies Inc. 2010
6
Design Kit
PV Li-Ion Battery System
Copyright (C) Bee Technologies Inc. 2010
7
1.1 Lithium-Ion Batteries Pack Specification
BAYSUN’s Lithium-Ion Batteries Pack : Power Battery Plus (PBT-BAT-0001)
• Capacity............................65[Wh], 4400[mAh] (Approximately)
• Rated Current....................3[A]
• Input Voltage.......................20.5 [Vdc]
• Output Voltage....................12.8 ~ 16.4 [Vdc] ( 4 cells )
• Charging time......................5[hours] (Approximately)
Copyright (C) Bee Technologies Inc. 2010
8
1.2 Discharge Time Characteristics
18V
D1
DMOD
PARAMETERS:
16V
Voch
16.8Vdc
rate = 1
CAh = 4400m
0
Hi
0.2C ( 880 mA )
14V
0.5C ( 2200 mA )
IN+
OUT+
INOUT0
G1
GVALUE
limit(V(%IN+, %IN-)/0.01, 0, rate*CAh )
1C ( 4400 mA )
12V
0
Batteries Pack Model Parameters
10V
8V
0s
1.0s
V(Hi)
2.0s
3.0s
4.0s
5.0s
6.0s
C1
1n
+
-
0
U1
PBT-BAT-0001
TSCALE = 3600
SOC1 = 100
TSCALE=3600 means
time Scale (Simulation
time : Real time) is
1:3600
NS (number of batteries in series) = 4 cells
C (capacity) = 4400 mA
SOC1 (initial state of charge) = 100%
TSCALE (time scale) ,
simulation : real time
1 : 3600s or
1s : 1h
Time
Discharge Rate : 0.2C(880mA), 0.5C(2200mA), and 1C(4400mA)
Copyright (C) Bee Technologies Inc. 2010
9
1.3 Single Cell Discharge Characteristics
Single cell
Measurement
Simulation
4.50
0.2C ( 880mA )
0.5C ( 2200mA )
1.0C ( 4400mA )
VOLTAGE [V]
4.00
3.50
3.00
2.50
2.00
100
90
80
70
60
50
40
30
20
10
0
-10
SOC [%]
•
Single cell discharge characteristics are compared between measurement data and simulation data.
Copyright (C) Bee Technologies Inc. 2010
10
1.4 Charge Time Characteristics
SOC [%]
100V
rate = 0.2
CAh = 4400m
80V
14V
3.0A
12V
2.0A
10V
1.0A
8V
>>
0A
0s
1
0
OUT+
OUTIN+
IN-
20V
4.0A
Voch
16.8Vdc
Hi
40V
16V
DMOD
G1
GVALUE
Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh )
60V
SEL>>
0V
Vbatt [V] ICharge [A]
18V
5.0A
1
2
D1
PARAMETERS:
C1
1n
+
0
-
0
U1
PBT-BAT-0001
TSCALE = 3600
SOC1 = 0
Vin
20.5Vdc
V(X_U1.SOC)
0
Batteries Pack Model Parameters
NS (number of batteries in series) = 4 cells
C (capacity) = 4400 mA
SOC1 (initial state of charge) = 100%
TSCALE (time scale) ,
simulation : real time
1 : 3600s or
1s : 1h
Charger Adaptor
1.0s 2.0s 3.0s 4.0s 5.0s 6.0s 7.0s
V(Hi) 2
I(U1:PLUS)
Time
Input Voltage = 20.5 Vdc
Input Current = 880 mA(max.)
Copyright (C) Bee Technologies Inc. 2010
11
2.1 Solar Cells Specification
BP Solar’s photovoltaic module : SX330
• Maximum power (Pmax)..............30[W]
• Voltage at Pmax (Vmp).............16.8[V]
• Current at Pmax (Imp)...............1.78[A]
502mm
• Short-circuit current (Isc)...........1.94[A]
595mm
• Open-circuit voltage(Voc)...........21.0[V]
Copyright (C) Bee Technologies Inc. 2010
12
2.2 Output Characteristics vs. Incident Solar Radiation
SX330 Output Characteristics vs. Incident Solar Radiation
2.5A
SOL=1
+
SX330
U1
SX330
SOL = 1
Current (A)
2.0A
1.5A
SOL=0.5
1.0A
SOL=0.16
0.5A
0A
I(Isence)
40W
Parameter, SOL is added as
normalized incident radiation,
where SOL=1 for AM1.5 conditions
Power (W)
SOL=1
30W
20W
SOL=0.5
10W
SEL>>
0W
0V
SOL=0.16
5V
10V
15V
I(Isence)* V(V1:+)
V_V1
20V
25V
30V
Voltage (V)
Copyright (C) Bee Technologies Inc. 2010
13
3. Solar Cell Battery Charger
•
Solar Cell charges the Li-ion batteries pack (PBT-BAT-001) with direct connect technique.
Choose the solar cell that is able to provide current at charging rate or more with the
maximum power voltage 100V
(Vmp) nears the batteries pack charging voltage.
80V
•
PBT-BAT-0001 (Li-ion batteries
pack)
60V
40V
– Charging time is approximately
5 hours with charging rate 0.2C or 880mA
20V
– Voltage during charging
with 0.2C is between 14.7 to 16.9 V
0V
V(X_U1.SOC)
1
18V
2
5.0A
14.9 V
16V
4.0A
14V
3.0A
12V
2.0A
10V
1.0A
14.7 V
8V
SEL>>
0A
0s
1
0.2C or 880mA
1.0s 2.0s
V(Hi) 2
3.0s 4.0s 5.0s
I(U1:PLUS)
Time
6.0s
7.0s
Copyright (C) Bee Technologies Inc. 2010
14
3.1 Concept of Simulation PV Li-Ion Battery Charger Circuit
Short circuit current ISC
depends on condition: SOL
Photovoltaic
Module
SX 330 (BP Solar)
Vmp=16.8V
Pmax=30W
Over Voltage Protection
Circuit
16.8V Clamp Circuit
Lithium-Ion
Batteries Pack
PBT-BAT-0001 (BAYSUN)
DC12.8~16.4V (4 cells)
4400mAh
Copyright (C) Bee Technologies Inc. 2010
15
3.2 PV Li-Ion Battery Charger Circuit
D1
PARAMETERS:
DMOD
sol = 1
Voch
16.8Vdc
pv
0
Hi
C1
1n
+
SX330
U2
SX330
SOL = {sol}
0
+
-
0
U1
PBT-BAT-0001
TSCALE = 3600
SOC1 = 0
0
•
Input value between 0-1 in the “PARAMETERS: sol = ” to set the normalized incident
radiation, where SOL=1 for AM1.5 conditions.
Copyright (C) Bee Technologies Inc. 2010
16
3.3 Charging Time Characteristics vs. Weather Condition
100V
80V
60V
40V
sol = 1.00
sol = 0.50
sol = 0.16
20V
0V
0s
1s
2s
V(X_U1.SOC)
3s
4s
5s
6s
7s
8s
9s
10s
Time
•
Simulation result shows the charging time for sol = 1, 0.5, and 0.16.
Copyright (C) Bee Technologies Inc. 2010
17
3.4 Concept of Simulation PV Li-Ion Battery Charger Circuit
+ Constant Current
Over Voltage Protection
Circuit
Short circuit current ISC
depends on condition: SOL
Photovoltaic
Module
SX 330 (BP Solar)
Vmp=16.8V
Pmax=30W
16.8V Clamp Circuit
Constant
Current
Control
Circuit
Icharge=0.2C (880mA)
Copyright (C) Bee Technologies Inc. 2010
Lithium-Ion
Batteries Pack
PBT-BAT-0001 (BAYSUN)
DC12.8~16.4V (4 cells)
4400mAh
18
3.5 Constant Current PV Li-Ion Battery Charger Circuit
D1
PARAMETERS:
PARAMETERS:
sol = 1
rate = 0.2
CAh = 4400m
DMOD
Voch
16.8Vdc
pv
0
+
SX330
0
•
•
U2
SX330
SOL = {sol}
IN+
IN-
OUT+
OUT-
Hi
C1
1n
0
G1
GVALUE
Limit(V(%IN+, %IN-)/0.1, 0, rate*CAh)
+
-
0
U1
PBT-BAT-0001
TSCALE = 3600
SOC1 = 0
Input the battery capacity (Ah) and charging current rate (e.g. 0.2*CAh) in the
“PARAMETERS: CAh = 4400m and rate = 0.2 ” to set the charging current.
Copyright (C) Bee Technologies Inc. 2010
19
3.6 Charging Time Characteristics vs. Weather Condition
(Constant Current)
100V
80V
60V
40V
sol = 1.00
sol = 0.50
sol = 0.16
20V
0V
0s
1s
2s
V(X_U1.SOC)
3s
4s
5s
6s
7s
8s
9s
10s
Time
•
Simulation result shows the charging time for sol = 1, 0.5, and 0.16. If PV can generate
current more than the constant charge rate (0.2A), battery can be fully charged in about 5
hour.
Copyright (C) Bee Technologies Inc. 2010
20
4.1 Concept of Simulation PV Li-Ion Battery System in 24hr.
Over Voltage Protection
Circuit
The model contains 24hr.
solar power data (example).
16.8V Clamp Circuit
Photovoltaic
Module
SX 330 (BP Solar)
Vmp=16.8V
Pmax=30W
Lithium-Ion
Batteries Pack
PBT-BAT-0001 (BAYSUN)
DC12.8~16.4V (4 cells)
4400mAh
Low-Voltage
Shutdown
Circuit
Vopen= (V)
Vclose= (V)
DC/DC
Converter
DC Load
VIN=10~18V
VOUT=5V
VIN = 5V
IIN = 1.5A
Copyright (C) Bee Technologies Inc. 2010
21
4.2 Short-Circuit Current vs. Time (24hr.)
The model contains
24hr. solar power data
(example).
2.0A
1.6A
+
1.2A
SX330
U2
SX330_24H_TS3600
0.8A
0.4A
0A
0s
4s
I(X_U1.I_I1)
8s
12s
16s
20s
24s
Time
•
Short-circuit current vs. time characteristics of photovoltaic module SX330 for 24hours as the
solar power profile (example) is included to the model.
Copyright (C) Bee Technologies Inc. 2010
22
4.3 PV-Battery System Simulation Circuit
Solar cell model with
24hr. solar power
data.
pv
D1
Set initial battery
voltage, IC=16.4, for
convergence aid.
DMOD
Voch
16.8Vdc
0
D2
batt
DMOD
+
SX330
C1
100n
IC = 16.4
Low-Voltage Shutdown Circuit
U2
SX330_24H_TS3600
0
VON = 0.7
VOFF = 0.3
RON = 0.01
ROFF = 10MEG
0
+
C3
10n
S2
S
Ronof f
100
Lctrl
+
-
Conof f
1n
IC = 5
0
PARAMETERS:
OUT+
OUT-
IN+
IN-
Lclose = 15.2
-
0
U1
PBT-BAT-0001
TSCALE = 3600
SOC1 = 70
Ronof f 1
batt1
100
dchth
OUT+
OUT-
IN+
IN-
SOC1 value is initial
State Of Charge of the
battery, is set as 70%
of full voltage.
Conof f 1
100n
E2
EVALUE
IF( V(lctrl) > 0.25 ,Lopen ,Lclose)
Lopen = 14
Lopen value is load
shutdown voltage.
Lclose value is load
reconnect voltage
E1
EVALUE
IF(V(batt1)>V(dchth),5,0)
+
0
DC/DC Converter
7.5W Load
(5Vx1.5A).
PARAMETERS:
out_dc
n=1
IN
Iomax
G1
IN+
OUT+
INOUTGVALUE
IN+
IN-
OUT+
OUT-
ecal_Iomax
EVALUE
0
n*V(%IN+, %IN-)*I(IN)/5
OUT
I1
E3
1.5Adc
IN+
OUT+
OUTINEVALUE
IF( I(OUT)-V(Iomax) > 0 ,n*V(%IN+, %IN-)*I(IN)/(I(OUT)+1u), 5 )
Limit( V(%IN+, %IN-)/0.1, 1m, 5*I(out)/(n*limit(V(%IN+, %IN-),10,25)) )
0
DCDCコンバータの簡易モデル
0
 Simulation at 15W load, change I1 from 1.5A to 3A
DCACコンバータの簡易モデルもあります。
Copyright (C) Bee Technologies Inc. 2010
23
4.3.1 Simulation Result (SOC1=100)
PV generated current
1.0A
0A
PV module charge the battery
I(pv)
17.5V
1
Battery voltage
2
2.0A
15.0V
0A
12.5V
-2.0A
Battery current >>
1
100V
75V
50V
25V
0V
Battery SOC
V(batt)
2
Battery supplies current when solar
power drops.
I(U1:PLUS)
Fully charged,
stop charging
SOC1=100
V(X_U1.SOC)
7.5V
DC output voltage
1
5.0V
DC/DC input current
2.5V
0V
•
•
•
2
600mA
500mA
SEL>>
400mA
0s
1
4s
V(out_dc) 2
8s
I(IN)
C1: IC=16.4
Run to time: 24s (24hours in real world)
Step size: 0.01s
Charging
time
12s
16s
20s
24s
Time
•
.Options ITL4=1000
Copyright (C) Bee Technologies Inc. 2010
24
4.3.2 Simulation Result (SOC1=70)
PV generated current
1.0A
0A
PV module charge the battery
I(pv)
17.5V
1
Battery voltage
2
2.0A
15.0V
0A
12.5V
SEL>>
-2.0A
Battery current
V=Lopen
V=Lclose
(5.1850,14.000)
1
Battery SOC
7.5V
DC output voltage
1
5.0V
DC/DC input current
2.5V
0V
•
•
•
•
2
(7.6750,15.199)
V(batt)
2
100V
SOC1=70
75V
50V
25V 10.152m,69.889)
0V
V(X_U1.SOC)
1.0A
Battery supplies current when solar
power drops.
I(U1:PLUS)
Fully charged,
stop charging
Shutdown
0.5A
>>
0A
0s
1
Reconnect
V(out_dc)
4s
2
8s
I(IN)
C1: IC=16.4
Run to time: 24s (24hours in real world)
Step size: 0.01s
SKIPBP
Charging
time
12s
16s
20s
24s
Time
•
.Options ITL4=1000
Copyright (C) Bee Technologies Inc. 2010
25
4.3.3 Simulation Result (SOC1=30)
PV generated current
1.0A
0A
PV module charge the battery
I(pv)
17.5V
1
Battery voltage
2
2.0A
15.0V
0A
12.5V
>>
-2.0A
Battery current
(7.6150,15.193)
V=Lopen
(1.6328,14.004)
1
V(batt)
2
V=Lclose
Battery supplies current when solar
power drops.
I(U1:PLUS)
100V
Fully charged,
stop charging
(12.800m,29.854)
SOC1=30
Battery SOC
SEL>>
0V
V(X_U1.SOC)
7.5V
DC output voltage
1
5.0V
DC/DC input current
2.5V
0V
•
•
•
•
2
1.0A
Shutdown
0.5A
>>
0A
0s
1
Reconnect
V(out_dc)
4s
2
I(IN)
C1: IC=15
Run to time: 24s (24hours in real world)
Step size: 0.01s
Total job time = 2s
8s
12s
Charging time
Time
•
16s
20s
24s
.Options ITL4=1000
Copyright (C) Bee Technologies Inc. 2010
26
4.3.4 Simulation Result (SOC1=10)
PV generated current
1.0A
0A
PV module charge the battery
I(pv)
17.5V
1
Battery voltage
2
2.0A
15.0V
0A
12.5V
SEL>>
-2.0A
Battery current
(7.6163,15.200)
V=Lclose
1
V(batt)
2
Battery supplies current when solar
power drops.
I(U1:PLUS)
100V
Battery SOC
Fully charged,
stop charging
SOC1=10
0V
V(X_U1.SOC)
7.5V
DC output voltage
1
5.0V
DC/DC input current
2.5V
0V
•
•
•
•
2
1.0A
0.5A
>>
0A
0s
1
Shutdown
Reconnect
V(out_dc)
4s
2
I(IN)
C1: IC=14.4
Run to time: 24s (24hours in real world)
Step size: 0.01s
SKIPBP
8s
12s
Charging time
Time
•
•
16s
20s
24s
.Options RELTOL=0.01
.Options ITL4=1000
Copyright (C) Bee Technologies Inc. 2010
27
4.3.5 Simulation Result (SOC1=100, IL=3A or 15W load)
PV generated current
1.0A
0A
PV module charge the battery
I(pv)
17.5V
1
Battery voltage
2
2.0A
15.0V
0A
12.5V
SEL>>
-2.0A
Battery current
1
Battery SOC
100V
75V
50V
25V
0V
7.5V
DC output voltage
1
2.0A
V=Lopen
V=Lopen (7.6086,15.200)
(3.8973,14.000)
V(batt)
2
(20.473,14.003)
Battery supplies current when solar
power drops.
I(U1:PLUS)
Fully charged,
stop charging
SOC1=100
V(X_U1.SOC)
5.0V
DC/DC input current
2.5V
0V
•
•
•
2
Shutdown
Shutdown
1.0A
>>
0A
0s
1
4s
V(out_dc) 2
8s
I(IN)
C1: IC=16.4
Run to time: 24s (24hours in real world)
Step size: 0.001s
Charging
time
12s
16s
20s
24s
Time
•
.Options ITL4=1000
Copyright (C) Bee Technologies Inc. 2010
28
4.3.4 Simulation Result (Example of Conclusion)
The simulation start from midnight(time=0).
The system supplies DC load 7.5W.
•
•
•
•
•
If initial SOC is 100%,
– this system will never shutdown.
If initial SOC is 70%,
– this system will shutdown after 5.185 hours (about 5:11AM.).
– system load will reconnect again at 7:40AM (Morning).
If initial SOC is 30%,
– this system will shutdown after 1.633 hours (about 1:38AM.).
– system load will reconnect again at 7:37AM (Morning).
If initial SOC is 10%,
– this system will start shutdown.
– this system will reconnect again at 7:37AM (Morning).
With the PV generated current profile, battery will fully charged in about 4.25
hours.
Copyright (C) Bee Technologies Inc. 2010
29
4.3.4 Simulation Result (Example of Conclusion)
The simulation start from midnight(time=0).
The system supplies DC load 15W.
• If initial SOC is 100%,
– this system will shutdown after 3.897 hours (about 3:54AM.).
– system load will reconnect again at 7:37AM (Morning).
– this system will shutdown again at 8:28 PM (Night).
• With the PV generated current profile, battery will fully charged in about
5.5 hours.
Copyright (C) Bee Technologies Inc. 2010
30
Bee Technologies Group
デバイスモデリング
スパイス・パーク(スパイスモデル・ライブラリー)
デザインキット
デバイスモデリング教材
【本社】
株式会社ビー・テクノロジー
〒105-0012 東京都港区芝大門二丁目2番7号 7セントラルビル4階
代表電話: 03-5401-3851
設立日:2002年9月10日
資本金:8,830万円
【子会社】
Bee Technologies Corporation (アメリカ)
Siam Bee Technologies Co.,Ltd. (タイランド)
本ドキュメントは予告なき変更をする場合がございます。
ご了承下さい。また、本文中に登場する製品及びサービス
の名称は全て関係各社または個人の各国における商標
または登録商標です。本原稿に関するお問い合わせは、
当社にご連絡下さい。
お問合わせ先)
[email protected]
Copyright (C) Bee Technologies Inc. 2010
31