Transcript pptx
HLAB meeting Status Report Toshi Gogami 1/Nov/2011 JLab E05-115 collaboration, 2009, JLab Hall-C Contents • (e,e’K+) experiments in JLab & Mainz. • JLab E05-115 (2009) – The number of events for high multiplicity data JLab & Mainz e + p ➝ e’ + K+ + Λ Spectroscopic experiment by (e,e’K+) reaction Feynman diagram e p e u u d γ* u K+ –s s u Λ d pe’ e + p ➝ e’ + K+ + Λ e’-Spectrometer eγ* p n Λ target nucleus Missing Mass HHY K+ K+-Spectrometer pK+ Experimental setup of JLab E05-115 p(e,e’K+)Λ,(Σ0) HES e’ Splitter Magnet HKS K+ Experimental setup of JLab E05-115 Data taking : Aug-Nov 2009 p(e,e’K+)Λ Tracking 2×10-4 7 [msr] 3 – 12 [deg] 7Li 2×10-4 8.5 [msr] 2 – 12 [deg] , 9Be , 10B , 12C , 52Cr ( 7ΛHe , 9ΛLi , 10ΛBe , 12ΛB , 52ΛV ) CH2, H2O 2 - 50 [μA] 10 - 300 [THz] Discrepancy of Number of Λ CH2 Target The number of Λ NΛ ≈ Nexpect 12C quasi-free H2O Target Λ The number of Λ NΛ ≈ ¼ Nexpect Λ Σ0 Acc. b.g. REAL DATA Black : hit wires Blue : selected wires Red : track Σ0 16O quasi-free Acc. b.g. REAL DATA Black : hit wires Blue : selected wires Red : track Lost events that we are interested in in tracking procedure. ECT*/JSPS core to core, T.Gogami (2011) 7 New tracking code Results of Introduction of new Tracking Code Increased ! Increased ! • NΛ ≈ ¼ Nexpect H2O NΛ ≈ ½ Nexpect For further improvement • Efficiency – Tracking – TOF detectors • Discarded events Rates of the KDC wires KDC1-u < 510 kHz KDC1-u’ 77124 KDC1-x < 350 kHz 77124 ( 52Cr target ) KDC1 KDC2-u < 290 kHz KDC2-u’ ~22 MHz KDC2-x < 230 kHz Rate [kHz] 52Cr, KDC1-x’52 KDC1-v Cr, 77124 KDC1-v’ Wire Number KDC2 5×5 ~11 MHz KDC2-x’ KDC2-v KDC2-v’ Rates of the HKS TOF detectors Events which are discarded KDC2 KDC1 52Cr, 77124 Events which are discarded KDC2 • Where and why are these events discarded ? • Are these events threw away by correct cut condition? KDC1 52Cr, 77124 Summary • Need to improve analysis code for high multiplicity data – Efficiencies – Rescue discarded events END JLab Hall-C circuit room, 5/Nov/2009 Backup Decay Pion Spectroscopy to Study -Hypernuclei Example: Direct Production e’ K+ 12 C * e Ground state doublet 12 of B p 12 B E.M. 12 Hypernuclear States: s (or p) coupled to low lying core nucleus B and Bg.s. 21- C 12 Weak mesonic two body decay ~150 keV 0.0 Decay Pion Spectroscopy for Light and Exotic -Hypernuclei Fragmentation Process Example: e’ K+ Access to variety of light and exotic hypernuclei, some of which cannot be produced or measured precisely by other means 12 e C * 12 B p * Fragmentation (<10-16s) s 4 Highly Excited Hypernuclear States: s coupled to HighLying core nucleus, i.e. particle hole at s orbit H 4 Hg.s. - 4 He Weak mesonic two body decay (~10-10s) Spectroscopic experiment by (e,e’K+) reaction e p e’-Spectrometer e- e u u d pe’ e + p ➝ e’ + K+ + Λ Feynman diagram γ* u K+ –s s u Λ d γ* p n Λ target nucleus 1. 2. 3. Missing Mass HHY K+ K+-Spectrometer pK+ Large Momentum transfer • Λ can be bounded in deeper orbit Λ’s spin at forward angle • Spin flip ~ spin non-flip Proton Λ,Σ0 • Absolute mass scale calibration JLab E05-115 experimental setup e + p → e’ + Λ + K+ 2×10-4 7 [msr] 3 – 12 [deg] 7Li 2×10-4 8.5 [msr] 2 – 12 [deg] , 9Be , 10B , 12C , 52Cr • (e,e’K+) experiment Primary beam • High intensity Thin target (~100 [mg/cm2]) • High quality APFB2011 in Korea (T.Gogami) 1. 2. 3. Coincidence experiment (K+ and e-) Small cross section ( ~100 [nb/sr] ) 1/1000 Energy resolution 21 Sub MeV (FWHM) Experimental setup of JLab E05-115 Data taking : Aug-Nov 2009 p(e,e’K+)Λ HKS chamber wire configuration Tracking 2×10-4 7 [msr] 3 – 12 [deg] 7Li 2×10-4 8.5 [msr] 2 – 12 [deg] , 9Be , 10B , 12C , 52Cr ( 7ΛHe , 9ΛLi , 10ΛBe , 12ΛB , 52ΛV ) CH2, H2O 2 - 50 [μA] 10 - 300 [THz] HKS Drift Chamber hit selection with TOF detectors Gravity • GREEN region Selective region • RED markers Selected hit wires • BLACK markers Rejected hit wires Particle direction Results of Introduction of new Tracking Code Increased ! Increased ! • NΛ ≈ ¼ Nexpect H2O NΛ ≈ ½ Nexpect Theoretical calculation of A=7 system Four-body cluster model for T=1 triplet hypernuclei JLab E01-011 7Li(e,e’K+)7 He (E.Hiyama et al., NPC 80, 2009) Λ -6.650.03 0.2 MeV α+Λ+N+N from α n n Preliminary -B (MeV) CSB interaction is determined to reproduce BΛ of 4ΛH and 4ΛHe. APFB2011 in Korea (T.Gogami) 25 (e,e’K+) experiment in JLab Hall-C 2000 1st 2005 Proof of feasibility generation exp. JLab E89-009 ENGE(e’) + SOS(K+) 12 B Λ ~ 750 [keV] (FWHM) sΛ ΛB E89-009 pΛ ~750 [keV] (FWHM) Establish exp. method 2nd generation exp. JLab E01-011 ENGE(e’) + HKS(K+) + Tilt method 7 He,12 B,28 Al Λ Λ Λ ~ 500 [keV] (FWHM) 2009 12C(e,e’K+)12 Confirming stage Up to Medium heavy 3rd generation exp. JLab E05-115 HES(e’) + HKS(K+) + Tilt method 7 He,9 Li,10 Be, 12 B,52 V Λ Λ Λ Λ Λ ≤ 500 [keV] (FWHM) APFB2011 in Korea (T.Gogami) Analysis stage 28Si(e,e’K+)28 ΛAl E01-011 sΛ pΛ dΛ ~600 [keV] (FWHM) Preliminary 26 (e,e’K+) experiment in JLab Hall-A 12C(e,e’K+)12 sΛ ΛB pΛ 2007 JLab E94-107 HRS’s (K+, e+)+ septum 9 Li,12 B,16 N Λ Λ Λ ~ 670 [keV] (FWHM) 16O(e,e’K+)16 sΛ APFB2011 in Korea (T.Gogami) 27 ΛN HESのバックグラウンド • ハイパー核生成に関係した電子 赤 • HES側のバックグラウンド – 制動放射起因の電子 緑 – Møller散乱起因の電子 青 モンテカルロシミュレーションでそれ ぞれ150000イベント生成させた バックグラウンドである、0o方向に集中す るMøller散乱・制動放射起因電子を避け るTilt法を導入 e’ rate Tilt法の概略図 第一世代 200 [MHz] APFB2011 in Korea (T.Gogami) 第二世代 1 [MHz] 28 Tilt角の最適化 Figure of Merit (FoM) • • • 6.5o ハイパー核生成に関与した電子の計数率 S Mφller散乱起因電子の計数率 NMφller 制動放射起因電子の計数率 NBrems シミュレーションによる計数率の見積もり Target e’ rate [kHz] 10B 480 12C 558 52Cr 1780 APFB2011 in ビーム強度 Korea (T.Gogami) 30 [μA] , 100 [mg/cm2] を仮定 29 角度アクセプタンス 入射電子ビームのエネルギー 1.851 2.344 [GeV] •バックグラウンドがより前方に集中 アクセプタンスをより前方へ 第二世代実験E01-011 •HESの角度アクセプタンスが広い ハイパー核の収量が増加 第三世代実験E05-115 APFB2011 in Korea (T.Gogami) 30 Ei=2.344,ω=1.5[GeV] 運動量アクセプタンス 52 ΛV g.s. 測定するハイパー核の生成領域を広 くカバーするように設計した。 HKSとHESの運度量の相関 立体角 • • • 一様に生成した全粒子の数をNGen 一様に生成した全粒子の立体角をΔΩGen HESの最下流まで通過した粒子の数をNpass 立体角 ~6.5[msr] w/ splitter APFB2011 in Korea (T.Gogami) 31 89Y(π+,K+)89 KEK-PS E369 89Y(π+,K+)89 Y Λ 89Y(π+,K+)89 51V(π+,K+)51 V Y, Λ Λ KEK-PS E369 51V(π+,K+)51 V Λ ΛY 51V(π+,K+)51 V Λ APFB2011 in Korea (T.Gogami) ∆𝐸 𝐸 ≈1.45 [MeV] (FWHM) KEK-PS E369 12C(π+,K+)12 C Λ 12C(π+,K+)12 C Λ 32 E05-115 experimental motivation(2) FULL(8) FULL(4) ・・ ・ 1f7/2 1d3/2 FULL(4) ・・ ・ n = 28 p = 24 52Cr 52 ΛV 7+ or 6+ f 6- or 5+ or 5- d 4- or 3- s 4+ p ls splitting ∝ 2l+1 Λ • ls splitting • Core excited Photo- and electro production of medium mass Λ-hypernuclei ,P.Bydzovsky et al. (2008) APFB2011 in Korea (T.Gogami) 33 Spectroscopic experiment via (e,e’K+) reaction Feynman diagram e p e u u d γ* u K+ –s s u Λ d e + p ➝ e’ + K+ + Λ e- γ* p n Λ K+ target nucleus measure Missing mass : M2HY = (Ee + MT - EK+ - Ee’)2 - ( pe - pK+ - pe’)2 •Binding energy •Cross section APFB2011 in Korea (T.Gogami) 34 P.Bydzovsdy ,photo- and electro production of medium mass Λ-hypernuclei, 2008 APFB2011 in Korea (T.Gogami) 35 Λ single particle energy (e,e’K+) experiments in JLab • E89-009 (2000) • E94-107 (2004) • E01-011 (2005) • E05-115 (2009) D.J.Millener et al. PRC 38, 6, 1988 Woods-Saxson potential with a depthAPFB2011 of 28 [MeV] and − 2in /3Korea (T.Gogami) a radius parameter 𝑟0 = 1.128 + 0.439𝐴 36 Feature of (e,e’K+) reaction (e,e’K+) (π+ , K+) (K- , π-) e + p ➝ e + K+ + Λ π+ + n ➝ K + + Λ K - + n ➝ π- + Λ e Reaction p e u u d γ* u K+ –s s u Λ d Momentum transfer (Typical ) ~300 [MeV/c] Λ’s Spin At forward angle flip ≈ non-flip Spin dependent structure proton Mirror lambda hypernuclei Beam High quality , high intensity Energy resolution (FWHM) u + –s K d n d u s d Λ u ~300 [MeV/c] –u s –u d π d n d u s d Λ u K- ~90 [MeV/c] Λ can be bounded in deeper orbit Λ’s from Target u – d π+ primary non-flip non-flip neutron neutron secondary secondary Thin (~100 mg/cm2) Thick(> a few [g/cm2] ) Thick(> a few [g/cm2] ) (Isotopically enriched) APFB2011 in Korea (T.Gogami) ≤ 500 [keV] 1 – 3 [MeV] Fine structure 1 – 3 [MeV] 37 Theoretical calculation of A=7 system Four-body cluster model for T=1 triplet hypernuclei JLab E01-011 7Li(e,e’K+)7 He (E.Hiyama et al., NPC 80, 2009) Λ -6.650.03 0.2 MeV α+Λ+N+N from α n n Preliminary -B (MeV) CSB interaction is determined to reproduce BΛ of 4ΛH and 4ΛHe. APFB2011 in Korea (T.Gogami) 38 (e,e’K+) experiment in JLab Hall-C 2000 1st 2005 Proof of feasibility generation exp. JLab E89-009 ENGE(e’) + SOS(K+) 12 B Λ ~ 750 [keV] (FWHM) sΛ ΛB E89-009 pΛ ~750 [keV] (FWHM) Establish exp. method 2nd generation exp. JLab E01-011 ENGE(e’) + HKS(K+) + Tilt method 7 He,12 B,28 Al Λ Λ Λ ~ 500 [keV] (FWHM) 2009 12C(e,e’K+)12 Confirming stage Up to Medium heavy 3rd generation exp. JLab E05-115 HES(e’) + HKS(K+) + Tilt method 7 He,9 Li,10 Be, 12 B,52 V Λ Λ Λ Λ Λ ≤ 500 [keV] (FWHM) APFB2011 in Korea (T.Gogami) Analysis stage 28Si(e,e’K+)28 ΛAl E01-011 sΛ pΛ dΛ ~600 [keV] (FWHM) Preliminary 39 (e,e’K+) experiment in JLab Hall-A 12C(e,e’K+)12 sΛ ΛB pΛ 2007 JLab E94-107 HRS’s (K+, e+)+ septum 9 Li,12 B,16 N Λ Λ Λ ~ 670 [keV] (FWHM) 16O(e,e’K+)16 sΛ APFB2011 in Korea (T.Gogami) 40 ΛN Elementary process p(e,e’K+)Λ ~40 hours (5 shifts) JLab E05-115 p(e,e’K+)Λ,Σ0 Very preliminary • p(e,e’K+)Λ,Σ0 are used for Energy calibration • Study of elementary process • Consistency check with past experiment APFB2011 in Korea (T.Gogami) R. Bradford et al. , FRC73, 2006 41 Single Λ hypernuclear spectroscopy • (π+,K+), (K+,π+) spectroscopy – CERN, BNL, KEK • A = 7 – 208 • Resolution (FWHM) ~ a few MeV • γ-ray spectroscopy with Ge detector – KEK, J-PARC • A=7 – 16 • Resolution (FWHM) ~ a few keV • Decay pion spectroscopy – Mainz Univ. • A < 10 • Resolution (FWHM) < 100 keV • (e,e’K+) spectroscopy Determine Absolute value – JLab, (Mainz Univ.) • A=7 – 52 • Resolution (FWHM) ~ 500 keV APFB2011 in Korea (T.Gogami) 42 (e,e’K+) reaction (e,e’K+) (π+ , K+) (K- , π-) e + p ➝ e + K+ + Λ π+ + n ➝ K + + Λ K - + n ➝ π- + Λ e Reaction p e u u d γ* u K+ –s s u Λ d Momentum transfer (Typical ) ~300 [MeV/c] Λ’s Spin At forward angle flip ≈ non-flip Spin dependent structure proton Mirror lambda hypernuclei Beam High quality , high intensity Energy resolution (FWHM) u + –s K d n d u s d Λ u ~300 [MeV/c] –u s –u d π d n d u s d Λ u K- ~90 [MeV/c] Λ can be bounded in deeper orbit Λ’s from Target u – d π+ primary non-flip non-flip neutron neutron secondary secondary Thin (~100 mg/cm2) Thick(> a few [g/cm2] ) Thick(> a few [g/cm2] ) (Isotopically enriched) APFB2011 in Korea (T.Gogami) ≤ 500 [keV] 1 – 3 [MeV] Fine structure 1 – 3 [MeV] 43 JLab CEBAF ( Continuance Electron Beam Accelerator Facility ) • (e,e’K+) experiment 1. 2. 3. Coincidence experiment (K+ and e-) Small cross section ( ~100 [nb/sr] ) 1/1000 Energy resolution sub MeV (FWHM) • Requirement for accelerator 1. high duty factor 2. high intensity 3. small emittance small ΔE/E CEBAF can satisfy these requirements Maximum beam energy 6.0[GeV] Maximum beam intensity 200[μA/Hall] Beam emittance ~2 [mm・μrad] Thomas Jefferson Beam energy spread National Accelerator Facility 100 [m] Beam bunch interval <1×10-4 ~2[ns] (499[MHz]) APFB2011 in Korea (T.Gogami) 44 (e,e’K+) experiment in JLab Hall-C 2000年 1st generation exp. JLab E89-009 ENGE(e’) + SOS(K+) 12 B Λ ~ 900 [keV] (FWHM) Proof of feasibility 2005年 Luminosity ×137 e’ rate 1/200 S/N ×2.7 2nd generation exp. JLab E01-011 ENGE(e’) + HKS(K+) + Tilt method 7 He,12 B,28 Al Λ Λ Λ ~ 500 [keV] (FWHM) Establish exp. method 2009年 Medium heavy 3rd generation exp. JLab E05-115 HES(e’) + HKS(K+) + Tilt method 7 He,9 Li,10 Be, 12 B,52 V Λ Λ Λ Λ Λ ≤ 500 [keV] (FWHM) APFB2011 in Korea (T.Gogami) 45 JLab E05-115 experiment APFB2011 in Korea (T.Gogami) 46 E05-115 experimental motivation (1) 12 • p-shell(7ΛHe , Λ9Li , 10 Λ Be , Λ B) Charge symmetry breaking (CSB) ΛN-ΣN coupling • Medium heavy (52V) Λ s-,p-,d-,f-orbit binding energy & cross section Mass dependence of Λ single particle energy l・s splitting , core configuration mixing dΛ, fΛ –state It is difficult experimentally. “ b.g. electron due to brems. ∝ ~Z2 “ BΛ [MeV] •2009 Aug – Nov @ JLab Hall-C •(e,e’K+) reaction First try •Target : 7Li , 9Be , 10B , 12C , 52Cr APFB2011 in Korea (T.Gogami) A = 52 47 JLab E05-115 experimental setup e + p → e’ + Λ + K+ 2×10-4 7 [msr] 3 – 12 [deg] 7Li 2×10-4 11 [msr] 2 – 12 [deg] , 9Be , 10B , 12C , 52Cr APFB2011 in Korea (T.Gogami) 48 JLab E05-115 experimental setup e + p → e’ + Λ + K+ 2×10-4 7 [msr] 3 – 12 [deg] 7Li 2×10-4 11 [msr] 2 – 12 [deg] , 9Be , 10B , 12C , 52Cr APFB2011 in Korea (T.Gogami) 49 HKS detectors June 2009 in JLab Hall-C 1 [m] HKS trigger •CP = 1X ×1Y × 2X •K = WC × AC CP × K − ~18 [kHz] (8 [μA] on 52Cr) p K+ π+ K+ p, π+ Cherenkov detectors -AC,WC• Aerogel (n=1.05) • Water (n=1.33) TOF walls -2X,1Y,1X(Plastic scintillators) TOF σ APFB2011 in Korea (T.Gogami) ≈ 170 [ps] Drift chambers -KDC1,KDC2σ ≈ 200 [μm] 50 HES Detectors HES D magnet Drift chambers - EDC1 , EDC2 TOF walls - EH1 , EH2 (Plastic scintillators) σ ~ 300 [ps] Time Of Flight HES trigger EH1 × EH2 e ~2 [MHz] (8 [μA] on 52Cr) APFB2011 in Korea (T.Gogami) 51 Data Summary JLab E05-115 (2009/June – 2009/Nov) APFB2011 in Korea (T.Gogami) 52 Analysis process HES This talk tracking HKS tracking x , x’ , y , y’ at Reference plane x , x’ , y , y’ at Reference plane F2T function F2T function x’ , y’ , p at Target x’ , y’ , p at Target Missing Mass particle ID (select K+) tune tune APFB2011 in Korea (T.Gogami) 53 Λ and 0 Σ p(γ*,K+)Λ,Σ0 ~40 hours (5 shifts) Because of high multiplicity of HKS (analysis code cannot handle with high APFB2011 in Korea (T.Gogami) 54 multiplicity) Analysis for high multiplicity data KDC2 KDC1 APFB2011 in Korea (T.Gogami) 55 Background event of HKS 9Be Overhead view x [cm] y [cm] , 38.4 [μA] KDC1 Background events Β≈1 KDC2 e- , e+ Events on HKS optics KDC1 KDC2 z [cm] HKS dipole magnet NMR port APFB2011 in Korea (T.Gogami) SIMULATION 56 Singles rate summary HKS Up to ~30 [MHz] HKS trigger ~ 10[kHz] HES COIN ≤ 2.0 [kHz] Up to ~15 [MHz] HES trigger ~ a few[MHz] APFB2011 in Korea (T.Gogami) 57 Multiplicity of typical layer of chamber HES HKS ~1.13 ~2.24 ~4.94 ~1.28 Multiplicity is high for HKS APFB2011 in Korea (T.Gogami) 58 HKS drift chamber wire configuration APFB2011 in Korea (T.Gogami) 59 Hit wires in KDC1 Overhead view low high Overhead view low high REAL DATA Black : hit wires Blue : selected wires Red : track CH2 REAL DATA Black : hit wires Blue : selected wires Red : track 52Cr Misidentification chance in hit wires selection increase ! APFB2011 in Korea (T.Gogami) 60 New tracking scheme NEW Good TDC High multiplicity Pattern recognition • Hit wire selection with TOF • 1X & 2X • Grouping • Pre-PID • Cherenkov detectors • 𝑑𝐸 𝑑𝑥 Reduce hit wires to analyze Solve left right Select good combination Combination selection with TOF counters Track fit Reduce hit wire combinations (h_tof_pre.f) APFB2011 in Korea (T.Gogami) 61 DC hit info. selection with TOF Gravity CUT ~17% CUT Particle direction ~8% Maximum gradient Minimum gradient Procedure in “h_dc_tofcut.f” 1. Get KTOF1X & 2X hit counter information 2. Make combination of 1X and 2X hit counter if those two are in same group (grouping) 3. Determine cut conditions on KDC1 & KDC2 in Korea (T.Gogami) 4. Select Hit wires in KDCAPFB2011 and Reorder them 62 Hit wires event display (1) Gravity • GREEN region Selective region • RED markers Selected hit wires • BLACK markers Rejected hit wires Particle direction Seems to work well APFB2011 in Korea (T.Gogami) 63 Apply to u,v-layer v v’-layer Selective region determined by 1X and 2X Convert x x’-layer Applied to uu’ and vv’ layers , too. APFB2011 in Korea (T.Gogami) 64 Hit wires event display (2) v v’ u u’ v v’ u u’ particle particle x x’ x x’ • GREEN region Selective region • RED markers & lines Selected hit wires • BLACK markers & lines Rejected hit wires APFB2011 in Korea (T.Gogami) 65 Results of Introduction new code Increased ! Increased ! Korea (T.Gogami) ΛAPFB2011 c.s. in(CH 2/H2O) issue is solved 66 Rate dependences • Why residuals get worse with rate (Multiplicity) ? – Hardware ? – Tracking is worse ? – Parameters ? APFB2011 in Korea (T.Gogami) 67 KTOF multiplicity ~2.7 ~1.8 ~6.5 ~3.8 Multiplicity of KDC are not only high52Cr , 77124 CH2 , 76314 but also TOF counters are! (for heavy target ) APFB2011 in Korea (T.Gogami) 68 Background event from NMR port 9Be KDC1 These particles come from NMR port KDC2 KDC1 KDC2 9Be , 38.4 [μA] KDC1 x [cm] KDC2 Overhead view y [cm] KDC1 KDC2 Side view 9Be HKS dipole magnet , 38.4 [μA] z [cm] , 38.4 [μA] Background events Β≈1 e- , e+ NMR port Events on HKS optics APFB2011 in Korea (T.Gogami) 69 B.G. mix rate (real data) b a B.G mix rate = * hks ntulpe APFB2011 in Korea (T.Gogami) 𝑏 𝑎+𝑏 70 e+ simulation SIMULATION • To see 1. Number of event 2. Angle & momentum of e+ generated in target APFB2011 in Korea (T.Gogami) 71 Target thickness dependence (Simulation) SIMULATION 52Cr H2O 9Be 12C CH2 10B 7Li Consistent with B.G. mix rate ! APFB2011 in Korea (T.Gogami) 72 Angle and momentum distribution of positrons SIMULATION Generate these event in HKS GEANT (Next page) HKS cannot accept positrons directly ! APFB2011 in Korea (T.Gogami) 73 e , e+ background in GEANT simulation e+ generated in target make HKS dirty Number of e+ Correlation (Simulation) KDC1 B.G. mix rate (Real data) KDC2 e- , e + Vacuum chamber (sus304) NMR port (sus304) • Generated particle : e+ • Distribution : spherical uniform • Momentum : 860 – 1000 [MeV/c] • Angle : 0 – 2 [mrad] APFB2011 in Korea (T.Gogami) 74 • 1000 events Basic tracking procedure Real data 52 CHCr2 target Good TDC High multiplicity Pattern recognition KDC1 Black : hit wires Blue : selected wires Red : track Solve left right Select good combination Combination selection with TOF counters Track fit Reduce hit wire combinations (h_tof_pre.f) APFB2011 in Korea (T.Gogami) 75 Results of TOF cut with grouping Residual CH2 , 2.0 [μA] , 76315 σ ≈ 150 [μm] Same σ ≈ 150 [μm] Multiplicity CH2 , 2.0 [μA] , 76315 Shift x x’ x x’ ~1.2 ~2.3 APFB2011 in Korea (T.Gogami) 76 Result of TOF cut with grouping Original code KDC select With “h_dc_tofcut.f” allowance Pure Selective region allowance 𝑆2 𝐹𝑂𝑀 = 𝑁 Optimal allowance 𝐹𝑂𝑀𝑡𝑜𝑓𝑐𝑢𝑡 𝑁𝐹𝑂𝑀 = 𝐹𝑂𝑀𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 Number of K+ ~2[%] up Too strict Good tracks hid by background appear ! APFB2011 in Korea (T.Gogami) 77 Apply to u,v-layer v v’-layer Selective region determined by 1X and 2X Convert x x’-layer Applied to uu’ and vv’ layers , too. APFB2011 in Korea (T.Gogami) 78 Results of TOF cut with grouping (all layers) Residual σ ≈ 150 [μm] CH2 , 2.0 [μA] , 76315 σ ≈ 150 [μm] Same Multiplicity Multiplicity of uu’vv’-layers • CH2 • ~20% reduction • 52Cr • ~5-10% reduction APFB2011 in Korea (T.Gogami) 79 Results of TOF cut with grouping (all layers) Faster ! Increase ! TOF cut works well Faster ! 52Cr Increase ! APFB2011 in Korea (T.Gogami) Parameters ? 80 Gogami’s study for other targets Target S (before) S (after) N(before) N (after) 12C (20mA) 7812 7840 (+0.4%) 6399 6429 (+0.5%) 12C (35mA) 18016 19130 (+6.2%) 35854 38374 (+7.0%) 7Li 29009 35771(+23.3%) 55737 72609 (+30.2%) 10B 27811 27964(+0.5%) 21236 22000(+3.5%) 52Cr 1206 2958(+145.3%) 4902 11878(+142.3%) APFB2011 in Korea (T.Gogami) 81 Coincidence time vs. Mass square APFB2011 in Korea (T.Gogami) 82 Cherenkov cut APFB2011 in Korea (T.Gogami) 83 Cherenkov light APFB2011 in Korea (T.Gogami) 84 p(γ*,K+)Λ/Σ0 cross section Comparison of CH2 and H2O CH2 H2O Λ [nb/sr] 50 (syst) 530 ± 50(stat) +- 20 40 (syst) 280 ± 40(stat) + -0 Σ0 [nb/sr] 120 ± 30(stat) -+10 10 (syst) 70 ± 20(stat) +10 - 0 (syst) Λ/Σ0 ratio 530/120 ~ 4 280/70 = 4 Correction factors : • AC cut ~ 0.89 • WC cut ~ 0.94 • HKS tracking ~ 0.99 • Mass2 cut ~ 0.99 • Kaon decay factor ~ 0.25 • (HES tracking ~ 0.9) • EHODO inefficiency • Lambda decrease ~ 0.84 Difference between CH2 and H2O HKS analysis: almost consistent → • Coincidence time • HES analysis efficiency • # of virtual photon • Accidental kill by AC • Detectors' cut efficiency → Need to estimate these factors precisely APFB2011 in Korea (T.Gogami) 85 After Gogami’s study Doi CH2 H2O H2O/CH2 G/K CH2 H2O H2O/CH2 Λ 3880 410 0.11 Λ 5113 1002 0.20 Σ0 910 100 0.11 Σ0 1342 131 0.10 CH2 H2O H2O (expected) Λ [nb/sr] 530 280 280*0.20/0.11~510 Σ0 [nb/sr] 120 70 70*0.10/0.11~60 Λ/Σ0 ratio 530/120 ~ 4 280/70 = 4 (assume the cross section in CH2 is consistent for both analysis) ←Fitting of S has problem? need more study APFB2011 in Korea (T.Gogami) 86 Basic image of matrix tuning procedure 1 loop 2 loop st nd Tuning w/ , S Initial : G4 100 times iteration Obtain 100 12B (20uA run) spectrums -> Fit the 100 gs peaks with gaussian -> Select the finest peak Tuning w/ , S, 12Bgs Initial : Result of 1st loop 100 times iteration Obtain 100 12B (35uA run) spectrums -> Fit the 100 gs peaks with gaussian -> Select the finest peak ・・ ・ ・ ・ ・・・ Tuning w/ , S, 12Bgs Initial : Result of 2st loop 100 times iteration Obtain 100 12B (35uA run) spectrums -> Fit the 100 gs peaks with gaussian -> Select the finest peak ・・ ・ ・ ・ ・・・ ・・ 3rd loop ・・ ・ ・ ・ ・・・ ・・ APFB2011 in Korea (T.Gogami) ・・ 87 In the loop How to select peaks? • How to decide the cut region? 1s? 2s? • How about the fitting? Initial matrices select peak How to decide the c2? • weight • asymmetric c2? (, S0, 12Bgs) calculate MM iterate n times Mimimize c2 obtain new matrices APFB2011 in Korea (T.Gogami) New matrices (n sets) 88 before before/after Column, after SSColumn, tune (HKS) Row, before Row, after APFB2011 in Korea (T.Gogami) 89 y’ vs x’ (before tune) vs xss (before tune) The effect of SS tuneyss(HKS) y’ vs x’ (after tune) yss vs xss (after tune) Need more tune? APFB2011 in Korea (T.Gogami) 90 第一世代実験E89-009(2000年) • スペクトロメータの構成 splitter+SOS+Enge • 測定した主なハイパー核 12 B Λ • エネルギー分解能 ~750[keV](FWHM) (当時最高) (e,e‘K+)反応を用いたハイパー核分光 実験が可能であることを証明した APFB2011 in Korea (T.Gogami) 91 第二世代実験E01-011(2005年) • スペクトロメータの構成 splitter+Enge+HKS • 測定した主なハイパー核 7 He,12 B,28 Al Λ Λ Λ • エネルギー分解能 ~400[keV](FWHM) 技術の確立 HKS建設エネルギー分解能向上 Tilt 法の導入 S/Nを劇的に改善 92 APFB2011 in Korea (T.Gogami) APFB2011 in Korea (T.Gogami) 93 Expected Missing mass of 52ΛV APFB2011 in Korea (T.Gogami) 94 Typical Trigger Rate APFB2011 in Korea (T.Gogami) 95 HKS Rate summary target current Kaon Pion Proton [μA] [Hz] [kHz] [kHz] CH2 2.0 82.3 6.7 7.1 7 31.6 325 27.2 37.1 37.9 269 23.4 31.7 38.2 152 11.8 15.0 19.3 125 9.1 11.1 7.3 34.2 4.6 3.4 Li 9 Be 10 B 12 C 52 Cr APFB2011 in Korea (T.Gogami) 96 Data summary E05-115 ( 2009 Aug – Nov ) Physics Data Target hypernucleus thickness beam total number of expected [mg/cm2] current[μA] charge[C] QF Λ (online) number of g.s. 7Li 7He 9Be Λ Li 10B 10Be 12C Λ 52Cr Λ Target 184.0 32.0 4.84 6.4E+4 (1.0 μb/sr) ~1000 (20 nb/sr) 188.1 38.3 5.33 4.5E+4 (1.2 μb/sr) ~200 (5 nb/sr) 56.1 38.7 6.25 4.8E+4 (1.3 μb/sr) ~800 (20 nb/sr) 12B 112.5 26.8 5.90 3.4E+4 (1.5 μb/sr) ~2000 (100 nb/sr) 52V 134.0 154.0 7.6 0.83 5.53 8.0E+3 (4.7 μb/sr) ~100 (70 nb/sr) Λ 9 Λ Calibration Data hypernucleus thickness beam total [mg/cm2] current[μA] charge[C] CH2 Λ , Σ0 450.8 H2O Λ , Σ0 ~500.0 2.0 0.28 2.7 0.20 APFB2011 in Korea (T.Gogami) measured assumption 97 E01-011 APFB2011 in Korea (T.Gogami) 98 and S spectra (CH2 target) E01-011 ~70 hours (450 mg/cm2, 1.5 uA) 1.9 MeV (FWHM) S c.f. E89-009, 183 hours (8.8 mg/cm2, 0.5 or 1.0 uA) T. Miyoshi et al., Phy. Rev. Lett. 90, 232502(2003) 2.3 MeV (FWHM) ~ 3.5 MeV (FWHM) Better resolution and statistics APFB2011 in Korea (T.Gogami) 99 Background subtraction Accidental background : polynomial function APFB2011 in Korea (T.Gogami) 100 GEANT4 12C 100 mg/cm2 Effect of simple gaussian fit: = +20 keV count difference : -30 % APFB2011 in Korea (T.Gogami) 101 12C(e,e’K+)12 #1 #2 B Two major peaks #1 : [(p3/2)-1p,(s1/2)] #2 : [(p3/2)-1p,(p3/2,p1/2)] Resolution : ~470 keV (FWHM) for g.s. Data taking : ~30 hours w/ 30 mA (126) (130) Fitting Result APFB2011 in Korea (T.Gogami) 102 12C(e,e’K+)12 #1 12C(+,K+)12 C B, #2 APFB2011 in Korea (T.Gogami) 103 12C(e,e’K+)12 #1 B #2 APFB2011 in Korea (T.Gogami) 104 12C(e,e’K+)12 B Red : calculation with SLA Green : calculation with KMAID #2 #1 Result Theory by Sotona et. al. (1.3 < E < 1.6 GeV, 1 < qK < 13 deg.) J Ex [MeV] Cross section [nb/sr] SLA KMAID 12- 0 0.14 19.7 65.7 20.7 43.0 2+ 3+ 10.99 11.06 48.3 75.3 38.0 68.5 ID Ex [MeV] Cross section [nb/sr] Cross section (Calc., SLA) [nb/sr] #1 0 97±3.9 (stat.) +29,-22 (sys.) 85.4 (1- + 2-) (126) 123.6 (2+ + 3+) (130) #2 11.18±0.01 (stat.) 100±3.8 (stat.) (sys.) ±0.10 (sys.) APFB2011 in+30, Korea-30 (T.Gogami) 105 12C(e,e’K+)12 B • Two major peaks ; #1:[(p3/2)-1p,(s1/2)], #2:[(p3/2)-1p,(p3/2,p1/2)] – Consistent -B with previous exp. – Different width for g.s. with E94-107 data – Ex and cross sections : agree with shell model calculation • Best resolution of 470 keV (FWHM) for g.s. APFB2011 in Korea (T.Gogami) 106 28Si(e,e’K+)28 #1 #2 #3 Al First sd-shell hypernuclear spectroscopy by (e,e’K+) Three major peaks #1 : [(d5/2)-1p,(s1/2)] #2 : [(d5/2)-1p,(p3/2,p1/2)] #3 : [(d5/2)-1p,(d5/2,d3/2)] Resolution : ~450 keV (FWHM) for g.s. Data taking : ~30 hours w/ 30 mA Fitting Result APFB2011 in Korea (T.Gogami) (78) (122) 107(77) Shell model calculation Full space (0d5/20d3/21s1/2)pn11,12 DWIA YNG interaction APFB2011 in Korea (T.Gogami) 108 28Si(e,e’K+)28 28Si(+,K+)28 Si Al, #1 #2 #3 APFB2011 in Korea (T.Gogami) 109 28Si(e,e’K+)28 Al Red : calculation with SLA Green : calculation with KMAID #1 Result #2 #3 Theory by Sotona et. al. (1.3 < E < 1.6 GeV, 1 < qK < 13 deg.) J Ex [MeV] Cross section [nb/sr] SLA KMAID 2+,3+ 0 92.1 71.76 43- 9.42 9.67 134.9 91.3 117.5 58.5 4+ 5+ 17.6 17.9 148.4 139.1 135.1 89.9 ID Ex [MeV] Cross section [nb/sr] Cross section (Calc. SLA) )[nb/sr] #1 0 60±5.0 (stat.) +27, -18 (sys.) 92.1 (2+ + 3+) (78) #2 10.98±0.02 (stat.) ±0.30 (sys.) 94±6.0 (stat.) +43, -28 (sys.) 226.2 (4- + 3-) (122) #3 19.30±0.03 (stat.) 59±6.7 (stat.) APFB2011 in Korea (T.Gogami) +55, -18(sys.) ±0.30 (sys.) 287.5 (4+ + 5+) 110(77) 28Si(e,e’K+)28 Al • First sd-shell hypernuclear spectroscopy by (e,e’K+) • Three major peaks ; #1:[(d5/2)-1p,(s1/2)], #2:[(d5/2)-1p,(p3/2,p1/2)] #3:[(d5/2)-1p,(d5/2,d3/2)] – – – – Deeper -B for g.s. than 28Si and shell model calculation Wider energy spacing between #1 and #2 than calc. Narrower energy spacing between #2 and #3 than calc. Smaller cross sections than calc. APFB2011 in Korea (T.Gogami) 111 7Li(e,e’K+)7 Observation of 7He w/ good statistics He #1 Fitting Result (40) APFB2011 in Korea (T.Gogami) 112 CSB effect by cluster model E.Hiyama et al. PRC80,054321(2009) Four-body cluster model N N Phenomenological potential -B= -5.36 w/o CSB APFB2011 in Korea (T.Gogami)-5.16 w/ CSB 113 7Li(e,e’K+)7 He Result ID -B [MeV] Cross section [nb/sr] #1 -5.71±0.02 (stat.) ±0.20 (sys.) 31±2.8 (stat.) +11.8,-9.3 (sys.) (40) #1 Theory by Sotona et. al. (Cross section) by Hiyama et. al. ( -B : w/o CSB) (1.3 < E < 1.6 GeV, 1 < qK < 13 deg.) J Red : calculation with SLA Green : calculation with KMAID 1/2+ APFB2011 in Korea (T.Gogami) -B [MeV] -5.36 Cross section [nb/sr] SLA KMAID 13.2 9.7 114 7Li(e,e’K+)7 He • High statistics spectroscopy • -B=-5.71±0.02 (stat.)±0.20 (sys.) for g.s. – Cluster model calculation -B=-5.36 (w/o CSB) -B=-5.16 (w/ CSB) • Cross section : larger than shell model calc. APFB2011 in Korea (T.Gogami) 115 E01-011 ~Count, S/N~ Peak ID 7 He:#1 # of peak [counts] # of BG(3s) [counts] S/N Sys. Err. (Contami. -%) Sys. Err. (Loss +%) 120 230 0.52 30 30 12 B:#1 630 561 1.12 5 30 12 B:#2 695 706 0.98 20 30 28 Al:#1 145 360 0.40 40 30 28 Al:#2 240 516 0.47 40 30 28 Al:#3 77 545 0.14 90 30 APFB2011 in Korea (T.Gogami) 116 APFB2011 in Korea (T.Gogami) 117