Transcript Document
イオンチャネルスーパーファミリー + K チャネルの分子構造と機能 K+ チャネル開口薬 血管における過分極弛緩連関 最近の知見 柳澤 輝行 東北大学医学部分子薬理 イオンチャネルの系統発生的関係 二回膜 Ca ABC イオンチャネル内蔵型 離 遊 輸送体 貫通型 nACh Glu Gly GABAA Ry AC CFTR ENaC IR K cN (Hille,1992より改変) 電位依存性 K a b g d Ca Na 動物 Na ? 7億年前 原生生物 ? Ca IP3 K 2x 2x 電位依存性 原始真核生物 陽イオン選択性 ? ? 14億年前 VDAC ? ABC 機械受容 Porin Colicins Fo 原始原核生物 The historical view. Potassium channels, key controllers of resting and action potentials (A) Clay Armstrong: Science 1998 280: 56-57. イオンチャネルスーパーファミリーの構造と分類 ス ・ パ ・ フ ァ ミ リ ・ N TRP TRPL C C a 2 + a nd N a + C han nels K + C ha nn els C N 6T M N サ ブ フ ァ ミ リ ・ N K + C han nels 構 造 型 フ ァ ミ リ ・ 他のイ オン チャ ネ ル 機械受容 ア ミ ロ ラ イ ド 感受性 P 2X 受 容 体 C 6T M + 2TM N C V ol tag e-G ated - - - + - + + + + - - - + T1 N C N S lo (K C a) E ag + + + + - C - - - - + - + + + + + + N - C N C a 2+ C a2+ ? S hak er S hab S haw S hal ( K v 1) ( K v 2) (K v 3 ) ( K v 4) nK Q T2 eag S lo erg el k (herg ) メ ン バ ー K v 1 .1 K v 1.2 K v 1 .3 K v 1.4 K v 1.5 K v 1.6 K v 1.7 K v 1.8 nS lo2 + + + N cA M P ( 嗅覚) cG M P ( 視覚) C S K Ca CN G - - - - - C K V L QT N N C TW I K T R E K TB A K 酵 母 C K QT 2T M 4TM - - + + + - - - - - cN TP C N C K i r1 K i r2 K i r3 K ir4K ir5 K i r6 nIR K K ir3.1 K ir3 .2 K ir3.3 K ir3.4 Kチャネル(四量体)の構造 内向き整流型Kチャネル 電位依存性Kチャネル X2 & X2 Ca、Naチャネル P P + + M1 S1 S2 S3 S4 + M2 S5 + S6 COOH H 2N H 2N M1 M2 P S3 S4 COOH S2 S1 S5 S6 P Science 1998 280: 69-77. Sideview of K+ channel K+ channel’s pore (GYG) M1/S5 M1/S5 + K チャネルの系統発生的関係 Structural elements and functions of the K+ channel Structural domains P (SS1SS2, H5) Core-domain Outside a -subunit + S4 1 2 3 Voltage sensor Inside Pore-forming region Blockers of binding sites (TEA, TBA, CTX, DTX) 4 + 5 M1 6 (Ba2+ , 4-AP) M2 N'-domain S45 S6/H6 Slow inactivation gate Recovery from inactivation CO2 - C'-domain Ligands binding sites Structural elements Functions +H N 3 Receptor for fast inactivation b a l l Fast inactivation ball Tetramer assembly NADP PO2 Redox state ATP/ADP Heme Estrogen <BKCa> b -subunit Inward rectifiers: N', M1, H5, M2, & C' K+ channel was thought to be "long" pores, wide at the ends with a narrow selectivity filter (B) that was a good fit for hydrated ions (C and E) and dehydrated K+ (D), but a poor fit for Na+ (F). Topview of K+ channel Science 1998 280: 69-77. Science 1998 280: 69-77. K + チャネルは不活性化と 種々の遮断薬blockersにより閉じる。 どのような機序を君は思いつくか? K+ current Control Inactivation ・II・ Blocker B Blocker A 0.1 sec Structural elements and functions of the K+ channel Structural domains P (SS1SS2, H5) Core-domain Outside a -subunit + S4 1 2 3 Voltage sensor Inside Pore-forming region Blockers of binding sites (TEA, TBA, CTX, DTX) 4 + 5 M1 6 (Ba2+ , 4-AP, Quinidine, Verapamil) M2 N'-domain S45 S6/H6 Slow inactivation gate Recovery from inactivation CO2 - C'-domain Ligands binding sites Structural elements Functions +H N 3 Receptor for fast inactivation b a l l Fast inactivation ball Tetramer assembly NADP PO2 Redox state ATP/ADP Heme Estrogen <BKCa> b -subunit Inward rectifiers: N', M1, H5, M2, & C' Structure of charybdotoxin + 17 a helix 35 + 2 b sheets + 33 NH2 + + + 13 COOH + - (b) 28 + 7 Agatoxin ペプチド性Kチャネル遮断薬は細胞外からチャネルのポアをちょうど 栓をするように塞いで遮断する。 チャネルポア Kチャネル遮断薬 Science 1998 280: 106-109. Fig. 3: Structure of Ion Channels. Panel A shows a subunit containing six transmembrane-spanning motifs, S1 through S6, that forms the core structure of sodium, calcium, and potassium channels. Panel B shows four such subunits assembled to form a potassium channel. The pore region appears to have wide intracellular and extracellular vestibules (approximately 2.8 to 3.4 nm wide and 0.4 to 0.8 nm deep) that lead to a constricted pore 0.9 to 1.4 nm in diameter at its entrance, tapering to a diameter of 0.4 to 0.5 nm at a depth of 0.5 to 0.7 nm from the vestibule. Open channel block model 200 s -1 C 50 s -1 k (M -1 s -1 ) O B L (s -1 ) 1/ D (s -1 ) = k [Drug] + L K d = L/k, 120 M Postulated Location of the Quinidine-Binding Site within the Transmembrane Segment Responsible for the Blockade of a Delayed Rectifier Potassium Channel (hKv1.5). A side view of the S6 helix shows that residues T505 and V512, which have been implicated in quinidine binding, are aligned on the same side of the helix. New England Journal of Medicine -- January 1, 1998 -- Vol. 338, No. 1 N Verapamil N-methyl-verapamil Structure of the phenylalkylamines verapamil and N-methyl-verapamil. (A) Chemical structure of verapamil (RII=H) and the permanently charged-quarternary N-methylverapamil (RII=CH3). (B) Three-dimensional structure of verapamil (spacefill). Yellow: phenylalkylamine binding site Gray: homologous amino acids identical to S6 resid Side view of the K channel with verapamil GYGD-motif (sticks) PAA binding sites Verapamil T396 & T397 (sticks) Shown are three subunits of the KcsA channel as ribbons. The protonated View from above into the channel pore. nitrogen of verapamil is visible in the center of the pore facing towards the negative environment of the GYGD-motif. The phenyl rings are located in a hydrophobic environment in closest proximity to the residues 1) K + チャネルは種々の細胞機能に 影響する。 2) K + チャネル開口薬の作用は過分 極がその機序にある。 3) K + チャネル開口薬は間接的な Ca拮抗薬ではない。 4) 弛緩機序を総合して過分極弛緩連 関と呼ぶ。 1) K + チャネルは種々の細胞機能に 影響する。 どのような機能を君は思いつくか? 例.神経の膜電位の再分極 担う機能が多彩であるとすれば、.. 心筋の膜電位・膜電流・イオンチャネルの概観 イオン濃度、平衡電位、電流の方向と膜電位効果 オーバーシュート プラトー 膜電位 膜電流 ノッチ + Na 0 mV ウィンドウ電流 細胞外 細胞内 145 mM 10 mM 2+ Ca 内向き電流 c b a 2 mM 100 nM 129 mV 内向き 脱分極 4 mM 150 mM -94 mV 外向き 再分極 過分極 再分極 2 nA + K 平衡電位 方向 効果 70 mV 内向き 脱分極 0.5 nA 静止膜電位 外向き電流 -85 mV 20 nA 0 100 200 時間 (msec) 電位依存性 Na+ チャネル 2+ 電位依存性 Ca チャネル + 電位依存性 K チャネル 400 300 遮断薬 局所麻酔薬、テトロドトキシン(TTX) Ca拮抗薬 III群抗不整脈薬、テトラエチルアンモニウム(TEA) + 一過性外向き K チャネル(b) + 遅延整流 K チャネル (c) + ; K ATP 内向き整流 K チャネル(a); K ACh アトロピン; グリベンクラミド The prolonged QT interval as measured on the ECG results from an increased duration of the cardiac AP (Panel B). The ventricular AP is maintained at a resting membrane potential (approximately -85 mV) by inwardly rectifying K+ currents (IK1, phase 4). Once an excitatory stimulus depolarizes the cell beyond a threshold voltage (for example, -60 mV), Na+ currents are activated that quickly depolarize the cell (INa, phase 0). These Na+ channels are rapidly inactivated, allowing transient K+ currents to return the AP to the plateau voltage (phase 1). The plateau lasts about 300 msec and provides time for the heart to contract. The plateau is maintained by the competition between outward-moving K+ currents and inwardmoving Ca2+ currents (phase 2). Progressive inactivation of Ca2+ currents and increasing activation of K+ currents repolarize the cell to the resting membrane potential (phase 3). Copyright © 1997 by the Massachusetts Medical Society. All rights reserved. ヘテロマルチマーKATPチャネルのサブユニット構造 SUR Kir Kir SUR *Kir サブユニット タイプ SUR1 + Kir6.2 b 細胞 SUR2A+ Kir6.2 心筋 SUR Kir SUR SUR2B+ Kir6.2 平滑筋 SUR2B+ Kir6.1 平滑筋 (KNDP チャネル) H2N * 細胞外 ジアゾキサイ ド結合部位 細胞内 COOH Walker A B NBF-1 ATP 感受性決定 A B H2N NBF-2 Mg-ADP 結合部位 M1 M2 ATP 結合部位 COOH 不活性化部位 O O O Ca signaling in vascular smooth muscle Ca2+ channels Ryanodine receptor IP3 receptor Contraction Ca Agonists Gq G R PLC DG 2+ Ca 2+ wave 2+ Ca 2+ Ca PKC 2+ 2+ 2+ Ca Ca Ca IP3 IP3 2+ Ca Ca 2+ IP3 2+ 2+ Ca Ca IP3 IP3 2+ 2+ Ca 2+ Ca Ca 2+ Ca 2+ Ca 2+ SR Ca pump 2+ Ca Ca 2+ + Ca 3Na 2+ Ca + 3Na Na-Ca exchanger KCa K + 2+ Ca + 2K Na pump Relaxation Sarcolemma Ca pump STOC Ca 2+ sparks STOCs: Spontaneous Transient Outward (hyperpolarizing ) Currents KCa : Ca 2+ -activated K+ channels 1) K + チャネルは種々の細胞機能に 影響する。 2) K + チャネル開口薬の作用は過分 極がその機序にある。 3) K + チャネル開口薬は間接的な Ca拮抗薬ではない。 4) 弛緩機序を総合して過分極弛緩連 関と呼ぶ。 K + チャネル開口薬の化学構造式 Pyridine: ニコランジル KRN2391 , C ON H C H 2 C H 2 ON O 2 NO, cGMP ↑ Pyrimidine: N H2 N N N Benzopyran: レブクロマカリム 発毛剤 O N NC * * OH CH3 O CH3 ジアゾキサイド minoxidil, LP 805 O N "N-K hybrid" Benzothiadiazine: NH2 N CH NH Cl S O2 "Nonspecific KCO" 3 脱分極 膜電位 -40 (mV) 収縮刺激・ 静止時 高血圧 -55 K +平衡電位 K+ チャネル Ca 2+ チャネル 過分極 -75 -90 細胞外 細胞膜 閉 K+ K+ Ca 2+Ca 2+Ca 2+ Ca 2+ Ca 2+ 開K + K+ K+ K+ Ca 2+ 細胞膜 開 細胞内 閉 血管平滑筋 の緊張 過分極弛緩連関 血管径 K +チャネルオープナー a 全身循環の細動脈 b 肺細動脈 低酸素、虚血、アデノシン K + チャネル開口薬 肺胞内低酸素 血管内圧上昇 K ATP (伸展受容チャネル開口) 脱分極 Kv and/or K Ca,ATP の 抑制 抑制 脱分極 Kv (電位依存性) BK Ca , IK Ca (電位依存性) 電位依存性 Ca2+ チャネルを 通してのCa流入 BK Ca , IK Ca (電位依存性) 電位依存性 Ca2+ チャネルを 通してのCa流入 細胞内Ca濃度上昇 細胞内Ca濃度上昇 筋原性張力(収縮) 低酸素性肺血管収縮 血流自己調節 :過分極、再分極 脳血流の自己調節 autoregulation 300 血流量 200 (ml/min) 100 0 0 100 潅流圧(動静脈圧差 200 (mmHg) -50 単一コンダクタンス (mV) 10 pS 20 pS -60 40 pS 静止膜電位 60 pS 100 pS -70 150 pS -80 E K = -90 0 20 40 60 80 100 単一細胞で開いているKチャネルの数 BK Ca , IK Ca :Ca活性化Kチャネル K ATP :ATP感受性Kチャネル :電位依存性Kチャネル 約100 pS, 約60 pS 約100 pS, 約10 pS 約10 pS 1) K + チャネルは種々の細胞機能に 影響する。 2) K + チャネル開口薬の作用は過分 極がその機序にある。 3) K + チャネル開口薬は間接的な Ca拮抗薬ではない。 4) 弛緩機序を総合して過分極弛緩連 関と呼ぶ。 K+channel opener inhibits Ca release from SR by a thromboxane A2 analogue 0 Ca 0.6 Fura-2 ratio 0.5 3 Force (mN) 0 U46619 Control Caffeine -5 Cromakalim 10 M 10 min Ca sensitivity and the concentration of KCl (Vm) Force (%) 100 80 60 Decrease in CaCl2 7 Decrease in KCl 1Ca Verapamil 6.5 -7 -5 (10 - 10 M) 60K 45K 6 40 90K-2.5Ca 0.3Ca 20 30K 5.5 5 0 0.1Ca 0.03Ca 5K -20 0 20K 15K 20 40 60 80 100 [Ca2+] i (%) Relaxation mechanisms of K+ channel openers + K channel openers Agonists 2+ Ca channel Receptor Hyperpolarization Hyperpolarization Gq K GTP + 2+ [Ca ] i PLC GDP K ATP DG + K IP 3 <PKC /rho> Hyperpolarization 2+ Ca SR Force Ca 2+ sensitivity Mechanisms of Disease: The Protective Effects of Estrogen on the Cardiovascular System New England Journal of Medicine -- June 10, 1999 -- Vol. 340, No. 23 p.1801-1811 Estrogen has both rapid and longer-term effects on the blood-vessel wall. The mechanisms that mediate the rapid effects of estrogen are not fully understood. Current data suggest that estrogen influences the bioavailability of endothelial-derived nitric oxide and, through nitric oxide-mediated increases in cGMP, causes the relaxation of vascular smooth-muscle cells. The longer-term effects of estrogen, about which more is known, are due at least in part to changes in vascular-cell gene and protein expression that are mediated by estrogen receptor (alpha), (beta), or both. Estrogen-regulate proteins influence vascular function in an autocrine or paracrine fashion. However, additional vascular target genes regulated by estrogen receptors need to be identified. Fig. 4: Mechanism of rapid, nongenomic activation of nitric oxide synthase by estrogen in endothelial Cells and vascular smoothmuscle cells. Direct Effects on Vascular Cells & Tissues- Rapid, Nongenomic Effects Estrogens can cause short-term vasodilatation by both endothelium-dependent and endothelium-independent pathways. These rapid effects do not appear to involve changes in gene expression. Two mechanisms for the rapid vasodilatory effects of estrogens have been explored in some depth: effects on (1) ion-channel function and (2) effects on nitric oxide. (1) ion-channel function calcium-activated potassium channels (At physiologic concentrations) L-type calcium channels (high concentrations of estrogen) (2) effects on nitric oxide Estrogen receptor (alpha) can directly activate endothelial nitric oxide synthase, perhaps through a tyrosine kinase pathway or the mitogen-activated protein kinase signaling pathway; may involve proteins that interact with the estrogen receptor, such as heat-shock protein 90, which also binds to and activates endothelial nitric oxide synthase The short-term coronary vasodilatory effects of estrogen in humans are largely mediated by the increased production of nitric oxide. Maximizing the benefits of K+ channels. The Maxi K+ channel of vascular smooth muscle cells is composed of both a and b subunits (top), whereas that of skeletal muscle cells is composed of a subunits alone (bottom). 17b-Estradiol binds to and increases the activity of Maxi K+ channels with b subunits. The resulting efflux of K+ from the vascular smooth muscle cells results in closure of Ca2+ channels and relaxation of the muscle in the blood vessel wall. Science Volume 285, Number 5435 Issue of 17 Sep 1999, p 1859 Acute Activation of Maxi-K Channels (hSlo) by Estradiol Binding to the b Subunit Valverde MA et al. Science Volume 285, Number 5435, pp. 1929 - 1931 Maxi-K channels consist of a pore-forming subunit and a regulatory b subunit, which confers the channel with a higher Ca2+ sensitivity. Estradiol bound to the subunit and activated the Maxi-K channel (hSlo) only when both a and b subunits were present. This activation was independent of the generation of intracellular signals and could be triggered by estradiol conjugated to a membrane-impenetrable carrier protein. This study documents the direct interaction of a hormone with a voltage-gated channel subunit and provides the molecular mechanism for the modulation of vascular smooth muscle Maxi-K channels by estrogens. Figure 4. Effect of 17b-estradiol on Maxi-K channels reconstituted in lipid bilayers. Channels obtained from skeletal muscle (A), smooth muscle (B), or Xenopus oocytes expressing and subunits (C) were recorded at 30 mV, 60 mV, and 40 mV, respectively, before and after the addition of 4.2 M 17bestradiol to the external side of the membrane.