Transcript Document
Stellar core collapse with QCD phase transition Ken’ichiro Nakazato (Tokyo University of Science) with K. Sumiyoshi(Numazu CT)and S. Yamada(Waseda U), EOS project: T. Miyatsu (Soongsil U)and S. Yamamuro(TUS) Compact Stars in the QCD Phase Diagram IV @ Prerow, Sep. 27, 2014 Fates of massive stars • Stars with > 10Msolar make a gravitational collapse and, possibly, a supernova explosion. • Stars with > 25Msolar are thought to form a black hole (BH). • Observations show 2 branches. – Hypernovae (Rapid rotation) – Faint or Failed Supernovae (Weak rotation) Normal SN Nomoto+ (2006) Failed supernova neutrinos • Failed supernova progenitor makes bounce once and recollapse to the black hole. • In this process, temperature and density of central region gets a few times 10 MeV and a few times r 0 (saturation density of nuclear matter), and a lot of neutrinos are emitted. Proto-neutron star Massive star n Core Collapse Bounce n n n n Mass accretion Black hole Motivation • Collapsing core would be enough hot and dense to undergo QCD transition. ~150MeV Early Universe T heavy ion collision Hadronic Phase Quark Phase Mixed Phase Black Hole Formation Supernova 0 r0 Compact stars r Aims of this study Nakazato, Sumiyoshi and Yamada(2008a, 2010b, 2013b). • We compute the dynamics and n emission for the black hole formation of 40Msolar (failed supernova) and supernova explosion of 15Msolar non-rotating progenitor involving equation of state (EOS) with QCD transition. – General relativistic n radiation hydrodynamics in spherical symmetry (Sumiyoshi+ 2005). – QCD transition: Shen EOS + MIT bag • We investigate the impacts on the dynamics and n signal. Hydrodynamics & Neutrinos Yamada, Astrophys. J. 475 (1997), 720 Yamada et al., Astron. Astrophys. 344 (1999), 533 Sumiyoshi et al., Astrophys. J. 629 (2005), 922 Spherical, Fully GR Hydrodynamics metric:Misner-Sharp (1964) mesh:255 non uniform zones + Neutrino Transport (Boltzmann eq.) Species : ne ,ne , nm ( = nt ) ,nm ( =nt ) Energy mesh : 14 zones (0.9 – 350 MeV) Reactions : e- + p ↔ n + ne, e+ + n ↔ p +ne, n + N ↔ n + N, n + e ↔ n + e, ne + A ↔ A’ + e-, n + A ↔ n + A, e- + e+ ↔ n +n, g* ↔ n +n, N + N’ ↔ N + N’ + n +n Hadron-quark mixed EOS Nakazato et al., PRD 77 (2008a), 103006 • Shen EOS (1998) for Hadronic phase • MIT Bag model (Chodos et al. 1974) for Quark phase – Bag constant: B = 90, 150 and 250 MeV/fm3 • Gibbs conditions are satisfied in Mixed phase. – mn = mu + 2md , – PH = PQ mp = 2mu + md b equilibrium (n trapping) is assumed in Mixed and Quark phase. – md = ms , mp + me = mn + mn Results for 40M☉ star • Evolution of the central density. • QCD transition fastens the BH formation. • At the bounce, the case with B = 90 MeV/fm3 has high density while others are similar. B = 90 MeV/fm3 B = 150 MeV/fm3 B = 250 MeV/fm3 Without Quarks (Shen) Compositions (B = 250 MeV/fm3) Nakazato et al., Astrophys. J. 721 (2010b), 1284 density (g/cm3) fraction 27 ms before BH formation 1 0.07 ms before BH formation d s n 0.5 at BH formation u 1 0.5 p 0 0 1015 1015 AH 1013 0 10 radius (km) 20 0 10 radius (km) 20 0 10 radius (km) 1013 20 • Quark transition occurs at the very late phase and trigger the black hole formation. Compositions (B = 90 MeV/fm3) density (g/cm3) fraction Nakazato et al., Astron. Astrophys. 558 (2013b), A50 100 ms after at bounce at BH formation bounce 1 u n 0.5 s 1 d 0.5 p 0 0 1015 1015 AH 1013 0 10 radius (km) 20 0 10 radius (km) 20 0 1013 10 radius (km) • Quarks appear already at bounce. → the central density gets higher. 20 energy(MeV) luminosity(1053erg/s) Neutrino Signal ne 2 90 150 nm /nm / nt /nt ne 250 90 150 250 2 90 1 150 250 1 0 0 40 40 20 20 0 0 0 0.5 1 time (s) 1.5 0 1 0.5 time (s) 1.5 0 1 0.5 time (s) 1.5 • Apart from end points, there is no difference even for the model with B = 90 MeV/fm3. • Neutrinos emitted from the outer region. Fate of 15M☉ star • For the cases with B = 250,150 MeV/fm3 , QCD transition does not occur at least 1 sec after the bounce. mass trajectory → no SN explosion Quark Hadron Mix 103 radius (km) Phase diagram: B = 250 MeV/fm3 Yℓ = 0.3 Central r and T of 1 s after bounce 100 10 0 0.2 0.4 0.6 0.8 1 time after bounce (s) (Sumiyoshi et al. 2005) nd 2 bounce with B = 90 MeV/fm3 • Confirming 2nd bounce and shock formation occurs for 15M☉ model. (Sagert+ 2009, Fischer+ 2011) s = 4.0kB Yℓ = 0.35 Mix → Quark 200.5 ms Hadron → Mix Our recent work and ADVERTISEMENT Japanese proverb • 木に竹を接ぐ(Ki ni také wo tsugu) – Joining bamboo to a tree: disharmony tree bamboo New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 • Chiral quark-meson coupling (CQMC) model – involving the coupling of scalar and vector fields to the quarks within nucleons • Relativistic Hartree-Fock i j j i i j i j PI: Dr. Tsuyoshi Miyatsu New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 • Crust EOS with Thomas-Fermi model – consistent with atomic mass data New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 • Mmax = 1.95Msolar with hyperons New EOS for neutron star matter Miyatsu, Yamamuro & Nakazato, ApJ 777 (2013), 4 • http://asphwww.ph.noda.tus.ac.jp/myn/ Thank you for your attention Chiral quark-meson coupling model • 一様核物質の状態方程式 : Chiral quark-meson coupling model から s dependence を取り込む(非線形効果) – ベクトル中間子のテンソル結合により、ハイペロンの 生成が抑制される。 → コア部分の状態方程式。 Coupling constant • Thomas-Fermi 計算により、原子核の質量・核 子分布を計算し、N との結合定数を決める。 – gsN, gwN, grN : mass data – gsY : Hyperon potential (Oyamatsu & Iida 2003) – gwY, grY, fwB, frB : ESC model を gwN, grN で scale Thomas-Fermi 計算 • バルクエネルギーに一様核物質 EOS を用いる。 – Chiral quark-meson coupling model n 陽子 幅 dr の領域 では一様 中性子 r • 結合エネルギーを最大化 表面 エネルギー クーロン エネルギー saturation パラメータ n0 = 0.155 fm-3 w0 = -16.1 MeV K0 = 274 MeV Esym = 32.7 MeV L = 75.8 MeV Li et al. arXiv:1211.1178 Esym (MeV)