W A T K I N S - J O H N S O N C O M P A N Y Semiconductor

Download Report

Transcript W A T K I N S - J O H N S O N C O M P A N Y Semiconductor

Engineering 43
Fourier
Transfer Fcn
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Engineering-43: Engineering Circuit Analysis
1
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Fourier Transform
 A Fourier Transform  A Conceptual Example
is an integral
• This Irregular Signal
transform that reexpresses a function
in terms of different
Sine/Cosine waves
• Is the SAME as the
of varying
Sum of these Sinusoids
amplitudes,
wavelengths, and
phases.
Engineering-43: Engineering Circuit Analysis
2
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Fourier Transform
 John Baptiste
Joseph Fourier
investigated Time
Varying Heat-Flow
in a Metal Bar
 His great Insight:
ANY Periodic
Function Could be
Expressed as the
sum of Sinusoidal
Functions
Engineering-43: Engineering Circuit Analysis
3
 For a Given,
arbitrary Periodic
Function, f(t), The
Fourier Equivalents
f t   b 0 

B
m
cos  m  0 t   m 
m 1
f t   d 0 

D
n
sin  n  0 t   n 
n 1
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Example: Square Wave
 The SquareWave Shown at Bottom-Lt
can be described by a sum-of-sines
v sq 
4A

sin  0 t  
4A
3
sin 3 0 t  
Engineering-43: Engineering Circuit Analysis
4
4A
5
sin 5 0 t  
4A
7
sin 7  0 t  
4A
9
sin 9  0 t   
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Transfer Fuction, H(f)
iin
 Consider a “Black Box”
v in
that takes Input Power,
vin & iin Transforms this
Power into an Output, vout & iout
iout
v out
• A typical transformation would be to “FilterOut” certain electrical frequencies.
 For Phasor Voltages
V out
Vin & Vout Define the
Hf 
voltage
V in
Transfer Function as
Engineering-43: Engineering Circuit Analysis
5
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Transfer Function
Hf 
V out
V in
 Note that the Transfer Function
• Is a Function of FREQENCY ONLY
• Can Change (and usually does change)
the Magnitude and Phase-Angle of many
of the incoming, frequency-dependent,
electrical signals
 Measuring an Unknown “Black Box”
Apply Sinusoidal Vin
(Vin0°), Measure Vout
(Voutφ°) and Plot:
Vout / Vin and φ
Engineering-43: Engineering Circuit Analysis
6
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Hf

Example Transfer Function

f  Hz

H  f
  
f  Hz
Engineering-43: Engineering Circuit Analysis
7
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Example Transfer Function
 Find vout for vin = 1.35Vcos(40∙2πt+65°)
H  f
  
Hf

−25
Engineering-43: Engineering Circuit Analysis
8
f  Hz

Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Example Transfer Function
 Then at 40 Hz
(40∙2π rads/sec)
H  40 Hz    25   150  
V out
V in
 Using the Values
Taken from the H(f)
Mag & Phase
Graphs
 Recall vin
V out   25   150   1 . 35 V  65 
 In Phasor for
 Or in the Time
Domain
v in  1 . 35 V cos 40  2 t  65  
V in  1 . 35 V  65 
 Thus
V out   33 . 75 V   85 
v out t    33 . 75 V  cos 40  2 t  85  
V out  H 40 Hz   V in
Engineering-43: Engineering Circuit Analysis
9
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
MultiFrequency Example 6.2
 Note the THREE
Frequencies
• 0 Hz
• 1000 Hz
– 1000∙2π
rad/sec
• 2000 Hz
– 2000∙2π
rad/sec
Engineering-43: Engineering Circuit Analysis
10
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Ex6.2 Transfer Function
 Apply to vin the Transfer Function
 From the Transfer Function find
H 0   4  0  H 1000   3  30  H  2000   2  60 
• Apply To components of vin
Engineering-43: Engineering Circuit Analysis
11
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Example 6.2
 Using This H(f) Set find
H 0   4  0  H 1000   3  30 
H  2000
  2  60 
V out 1  H 0   V in1  4  0   3  0   12  0   12
V out 2  H 1000   V in 2  3  30   2  0   6  30 
V out 3  H 2000   Vin 3  2  60   1  70   2   10 
 Note that the above Phasors CanNOT
be added as they have DIFFERENT
Frequencies.
Engineering-43: Engineering Circuit Analysis
12
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Example 6.2
 Because of Differing Frequencies
MUST add TIME-DOMAIN Voltages
V out 1  12
v out 1 t   12
V out 2  6  30 
v out 2 t   6 cos 1000  2  30  
V out 3  2   10 
v out 3 t   2 cos 2000  2  10  
 Then vout(t)
is simply
the SUM
of the above
Engineering-43: Engineering Circuit Analysis
13
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
1st Order Lo-Pass Filter
 Consider the RC Ckt
Shown below
ZC 
1
j C

1
j  2 f C
 Notice the Limits of
Behavior
V in
V out
lim Z C  lim
f 0
f 0
lim Z C  lim
 In the Frequency
Domain the Cap
Impedance, Zc
Engineering-43: Engineering Circuit Analysis
14
f 
f 
1
j  2 f C
1
j  2 f C

0
 A cap is
• OPEN to Low-Freq
• SHORT to Hi-Freq
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
1st Order Lo-Pass Filter
 Thus the Behavior
of a Cap-Based
Impedance
• At LO-Frequencies a
Cap acts as an
OPEN Circuit
V in
• At HI-Frequencies a
Cap Acts as a
SHORT Circuit
ZC
 Now use Phasor VDivider on RC ckt
Engineering-43: Engineering Circuit Analysis
15
ZR  R
ZC 
V out 
Z tot
V in 
V out
1
j  2 f C
1  j  2  f C 
R  1  j  2  f C 
 Multiplying Top&Bot
by j2πfC
V out 
1
1  j  2 f RC
V in
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
V in
1st Order Lo-Pass Filter
 Then the Transfer
Function
Hf 
V out

V in
1
1  j  2  f  RC
 ReWriting
Hf 
Hf 
1
1  jf  2  RC
1  j f
1  f


 Note The Mag & Ph
of H(f) in terms of fB :
jf 1 f B 
1
1
fB 
fB 
 Where
Hf
2
fB 
1
2  RC
Engineering-43: Engineering Circuit Analysis
16
 fB is the “Break
point” Frequency at
which H(f) falls to
70.7% of its Original
Magnitude Value.


1
1  f
 H  f    arctan
fB 
f
2
fB 
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Lo-Pass Filter
V in
V out
 The LoPass Filter Transfer Function
 fB : is also call the Half-Power-Frequency
• Recall Full Power to a Resistor:
I R
or
• Then HALF Power: I
V

Engineering-43: Engineering Circuit Analysis
17
R
2
2
or
2
V
2
2
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
R
2
R
LR (LowPass) Filter
 Find the Transfer
Function for LR Ckt

Z L  j 2  fL
V in
V out
I

 Use Ohm Find The
Single Loop Current
I
V in
ZL  R

V in
j 2  fL  R
Engineering-43: Engineering Circuit Analysis
18
 Then also by Ohm

 1
V in
V in
V out  I  R  



j 2  fL R  1
 j 2  fL  R  1
R
 ReWriting
V out 
V in
j 2  fL R  1
V in

j
f
 R 


 2  fL 

1
V in
1 j
f
 fB 
 Arrive at Xfer Fcn very
similar to RC Ckt
Hf 
V out

V in
where : f B  R
1
1  jf
fB
2 L 
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
The deciBel (dB)
 Named after
Alexander Graham
Bell, the deciBel
(dB) relates two
Power Levels
L dB  10 log
P2
P1
 SomeTimes The
Power Level is
Referenced to a
Standard Value, P0
Engineering-43: Engineering Circuit Analysis
19
 In this case
L dB  10 log
P
P0
 ReCall a Current or
Voltage delivering
Power to a Resistor
Pv  V
2
R
Pi  I R
2
 Then the dB in
Current or Voltage
Ratios
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
The deciBel (dB)
 dB In Terms of
Voltage Ratios
L dB
 V 22 R 
P2

 10 log
 10 log  2

P1
 V1 R 
 V 22
 10 log  2
 V1
2

V 
V 
  10 log  2   20 log  2 

V 
V 

 1
 1 
 Or dB for Currents
L dB
 I 12 R 
 10 log
 10 log  2 
P1
 I2 R 
P2
2
I 
I 
I 
  10 log  2   20 log  2 
 10 log 

 I 
 I 
I 
 1 
 1
2
2
2
1
Engineering-43: Engineering Circuit Analysis
20
 Now we Defined
Hf


V out
V in 
Hf

 V out V in
2
 Since |H(f)| is a
Voltage Ratio,
define
Hf
 dB
 20 log  H  f
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx

dB Plots (SemiLog) Plot
 Plotting H(f) on the logarithmic dB Scale
makes it easier to distinguish Very
Large (104 vs 105) or Very Small (10−4
vs 10−5) Points on the Plots
 85 db  20 log H  f

Engineering-43: Engineering Circuit Analysis
21
Hf

 10
 85 20
 10
 4 . 25
 0 . 0000562
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Cascaded NetWork Gain
 Consider the
Transfer Function of
the “BlackBox” at
V out
Right
Hf 
V in
 Looking inside the
BlackBox find
V out
V in

V out 2
V in 1

V out 2
V in 1
1 
V out 2
V in 1
 Note that with
Vout1 = Vin2
Engineering-43: Engineering Circuit Analysis
22

V out 1
V out 1
V out
Hf 

V out 2
V in
V in 1
V out 1
so : H  f  


V out 1
V out 2
V out 1
V out 2
V in 1

V in 2

V in 1
V out 1
or
V in 2
 H 1  f  H 2  f

 Or in dB form
Hf

 H 1  f  H 2  f

20 log H  f

 20 log H 1  f   H 2  f
20 log H  f

 20 log H 1  f
Hf
 dB
 H1 f
 dB

  20 log
 H 2 f
 dB
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
H 2 f


Reading Logarithmic Scales
 Tools Needed
• Ruler
• Scientific Calculator
 To Find a Value of a Pt
Between Decades m & n
• Use Ruler to Measure
– Decade Distance, dd
– Distance from Pt to Lower
Decade (Decade m), dp
• Then The Value at the Pt
V  10
d p dd
10 m
Engineering-43: Engineering Circuit Analysis
23
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
10
10
-30
-31

d d  21.1 mm
10
-32
V  10
15.4 21.1
10
d p  15.4 mm
10
32
 10
0.730
10
32
 5.37 10
32
-33
400
405
410
415
Engineering-43: Engineering Circuit Analysis
24
420
425
x
430
435
440
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
445
450
Octave
 An octave is the interval between two
points where the frequency at the
second point is twice the frequency of
the first.
 Given Frequencies f1 & f2
N oct

OR
N oct

 f1 

log 2 

f
 2
log  f 1 f 2 
log  2 
Engineering-43: Engineering Circuit Analysis
25
MUSICAL Octaves
Octave
1
2
3
4
5
6
7
8
Frequency (Hz)
63
125
250
500
1k
2k
4k
8k
Wavelength in air
(70oF, 21oC) (ft)
17.92
9.03
4.52
2.26
1.129
0.56
0.28
0.14
Wavelength in air
(70oF, 21oC) (m)
5.46
2.75
1.38
0.69
0.34
0.17
0.085
0.043
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
WhiteBoard Work
 Let’s This Nice
Problem 

v in t 
v out t 

 Find the OutPut
Voltage for For
this Input
v in t   17 V  23 V cos 1000  2 t   31V cos 12000  2 t 
Engineering-43: Engineering Circuit Analysis
26
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
All Done for Today
79.5 MHz
Notch
Filter
Engineering-43: Engineering Circuit Analysis
27
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Engineering 43
Appendix
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Engineering-43: Engineering Circuit Analysis
28
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Logarithm Change
of Base Proof
Engineering-43: Engineering Circuit Analysis
29
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Engineering-43: Engineering Circuit Analysis
30
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Engineering-43: Engineering Circuit Analysis
31
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
Engineering-43: Engineering Circuit Analysis
32
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
White Board RL Filter Problem
Engineering-43: Engineering Circuit Analysis
33
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
LR Filter Transfer Function
1
0.9
f = 0:10:20e3
HfB = 1./sqrt(1+(f/fB).^2);
plot(f,HfB,'LineWidth',3), grid, xlabel('f
(Hz)'), ylabel('|H(f)')
disp('showing fB plot - hit ANY KEY to
continue')
pause
fB = 2700/(2*pi*68e-3)
Hf = abs(2700./(2700 + j*2*pi*f*68e-3));
plot(f,Hf,'LineWidth',3), grid, xlabel('f
(Hz)'), ylabel('|H(f)')
0.8
|H(f)
0.7
0.6
0.5
0.4
0
0.2
0.4
0.6
0.8
1
f (Hz)
1.2
Engineering-43: Engineering Circuit Analysis
34
1.4
1.6
1.8
2
4
x 10
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
P5.57 Graphics
Engineering-43: Engineering Circuit Analysis
35
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx
P5.81 Graphics
Engineering-43: Engineering Circuit Analysis
36
Bruce Mayer, PE
[email protected] • ENGR-43_Lec-06a_Fourier_XferFcn.pptx