Transcript Document
Isomerization, Perturbations, Calculations and the S1 State Of C2H2 J. H. Baraban, P. B. Changala, J. R. P. Berk, R. W. Field, J. F. Stanton, A. J. Merer Happy Birthday, C2H2! J. Stark and P. Lipp. ZPC, 86(1):36, 1913. Theory and Spectroscopy C. K. Ingold and G. W. King. J. Chem. Soc., pg. 2715, 1953. I. G. Ross. Trans. Faraday Soc., 48:973, 1952 Theory and Spectroscopy 2 A. J. Merer, N. Yamakita, S. Tsuchiya,J. F. Stanton, Z. Duan, and R. W. Field. Mol. Phys., 101:663, 2003. trans conformer of S1 C2H2 - Franck-Condon active - Totally symmetric trans bend torsion cis bend - + + - - Non-totally symmetric bends - Darling-Dennison resonance and Coriolis coupling form bending polyads: Near-prolate top: S1 C2H2 cis-trans Isomerization Primer cis bend, q6 cis T0 44870 1 2 3 4 5 6 ETS ≈ 4979 Fundamental Frequencies Mode EOM-CCSDT Expt. Calc. trans- Obs. T0 CH sym. str. 2884.76 2880.08 4.68 42197.57 CC str. 1383.23 1386.9 -3.67 trans bend 1062.04 1047.55 14.49 torsion 730.65 764.9 -34.25 CH antisym. str. 2860.52 2857.4 3.12 cis bend 755.3 768.26 -12.96 Curvilinear Calc.-Obs. 25 (3D) 12 (1D), <1 (3D) <1 (3D) trans bend, q3 1 1 1 2 B 5000 Barrier Proximal States 1 1 1 3 1 cm 1 1 3 B E / 1 1 1 B 3 2 2 2 3 1 1 3 1 1 3 1 2 3 3000 2 2 1 2 3 1 1 2 B 2000 2 0 2 B 1 0 2 2 1 2 2 2 1 1 1 2 1 2 1 1 1 3 B 1000 3 B 3 2 B 3 1 3 3 B B 1 2 3 B 1 1 3 B 1 2 3 B 1 3 3 4 2 B 4 3 B 1 2 3 B 1 3 2 2 3 B 2 3 B 1 2 3 1 3 4 3 B 3 B 2 3 B 2 B B 2 2 5 1 2 B 3 2 1 3 1 12 2 3 B 2 B 1 5 B 4 4 3 B 3 5 1 1 1 1 B 2 3 B 2 3 B 1 2 1 3 3 1 1 2 2 B 1 4 1 5 6 2 2 5 3 1 3 B 2 B 1 2 3 1 B 1 5 B 1 2 4000 3 1 B 3 5 B 2 3 1 3 5 1 2 5 B 1 1 2 1 1 2 2 1 1 2 2 5 B3 B2 B1 1 ETS Fitting the Barrier Height 1100 E(v+1)-E(v) (cm-1) 1000 ETS= 4592 ± 2 cm-1 900 800 700 600 Fits to Experimental 3n62 T0 data 500 ETS= 4695 ± 36 cm-1 400 ETS= 4852 ± 5 cm-1 300 0 1000 2000 3000 4000 ½[E(v+1)+E(v)]-E(0) (cm-1) 5000 6000 B2 polyad: K- and J- structures 44100 -1 E / cm 42 0f (ag) 43760 E / cm-1 -1.05J(J+1) Observed Calculated 3e K=2 3f 44000 4161 0e (bg) 43740 43900 1f 1e 43720 1e 43800 1f 42 K=2 1 1 46 43700 6 2 0 62 0f (ag) 43700 1 2 Merer et al. JCP, 129:054304, 2008. 3 4 K 0 20 40 60 80 J(J+1) B3 polyad: K- and J- structures 45000 1 2 44560 -1 E / cm Observed 0f (bu) -1 E / cm - 1.05J(J+1) Calculated 46 2 1 46 0e (au) K=2 4 44 800 44520 1 3 3 44480 44600 1 2e 2e 2f 1 2 46 2 1 46 4 0e (au) 2f 3 3 63 0f (bu) 1e 1f 44440 44400 0 1 2 Merer et al. JCP, 129:054304, 2008. 3 K 4 0 20 40 60 80 J(J+1) 4 3 6 K-staggering in cis 3161 Merer et. al., J. Chem. Phys, 134, 244310, 2011. K-staggerings come from tunneling splittings J. T. Hougen and A. J. Merer. JMS, 267:200, 2011. J. H. Baraban et. al. JCP, 134:244311, 2011. J. T. Hougen. JMS, 278:41, 2012. K-staggerings come from tunneling splittings K-staggerings come from tunneling splittings K-staggerings come from tunneling splittings 180o K-staggerings come from tunneling splittings 180o K-staggerings come from tunneling splittings 180o Even K states only with symmetric tunneling component K-staggerings come from tunneling splittings 180o Odd K states only with antisymmetric tunneling component E(K) ∝ K2 . . . ? TvK - Tv0 (TvK – Tv0)/K2 17.77 17.77 67.96 16.99 151.32 16.81as A - B ≈ 16.46 A - B ≈ 16.40 A - B ≈ 17 ✓ A - B ≈ 22.77 ! Todd-Teven= +6.31 cm-1 J. C. Van Craen, M. Herman, R. Colin, and J. K. G. Watson. JMS, 111(1):185, 1985. Summary • Two types of barrier-proximal perturbations – Isomerization dip – K-staggerings – Together these two types of information can characterize the barrier • K-staggerings a particular challenge – complicate assignments – difficult to understand/predict • New experiments and calculations needed Acknowledgements Field Group Members: Collaborators: Dr. Adam Steeves Dr. Hans Bechtel Jun Jiang Peter Richter G. Barratt Park Prof. J. F. Stanton (UT-Austin) Prof. A. J. Merer (UBC/IAMS) Dr. J. T. Hougen (NIST) B. Broderick (WSU) Prof. A. Suits (WSU) Funding DOE NSF GRFP