Transcript Document

International Symposium on Molecular
Spectroscopy 67th meeting
Pump/Probe Microwave-Optical Double Resonance
(PPMODR) Study of Tungsten Carbide( WC)a
and Platinum Carbide(PtC)b
Fang Wang, Chengbing Qin, Ruohan Zhang, Timothy C. Steimle
Dept. Chem. & BioChem.,Arizona State University, Tempe, AZ,USA
aF.
Wang and T.C. Steimle, J. Chem. Phys. 136, 044312 (2012). Funded by
bC.
Qin, R. Zhang, F. Wang, T. C. Steimle, Chemical Physics Letters, 535, 2012
Funded by
Outline
I. What is PPMODR?
a). History & Motivation
b). Concepts & Experimental Set-up
II.Examples
a). WC
(X3D
1)
182W
(26.3%), 183W (14.3%), and
(30.1%), 186W (28.6%)
184W
W-doubling parameter
Observe nearly equal intensity
(Magnetic dipole transition VS Electric dipole transition)
b). PtC (X1S+)
194Pt(33.0%, 195Pt(33.8%)
and 196Pt (25.2%)
Nuclear spin-rotation interaction parameter
PPMODR(History)
Precise ground-state data
S.D.Rosner, T. D.Gaily, and R. A. Holt, Phys. Rev. Lett. 35, 785 (1975)
Molecular-beam, laser-radiofrequency double-resonance(LRDR) technique
W. Ertmer and B. Hofer, Z Phys. A 276, 9(1976)
Hyperfine structure measurements of the atomic beams using the LRDR technique
W.J. Childs, L.S. Goodman: Phys. Rev. A 21, 1216 (1980)
Hyperfine constants of highest precision with the molecular beam using using LRDR technique
W. E. Ernst and S. Kindt, Appl. Phys. B 31( 1983)
A laser-Microwave double-resonance experiment has been developed
W.J. Childs, Physics Reports, 211(1992)
Review of Laser-Radiofrequency double resonance studies
PPMODR(Motivation)
Absorption
Laser or Radio-frequency
I0
L
The intensity is given by Beers Law:
I=I0e-aLC≈I0(1-aLC)
Absorption≈aLC
High absorption
a∝f*u2
Line width Dv∝u
Optical spectroscopy
I
a is molecular absorption coefficient
C is the concentration
High sensitivity
f is the fraction of the total
which is in the lower of the
two states.
u is the transition frequency
High sensitivity, low resolution
Microwave spectroscopy
low sensitivity, high resolution
Optical spectroscopy & Microwave spectroscopy
High sensitivity, resolution, selectivity
Pump/Probe Microwave-Optical Double Resonance
PPMODR(Concept)
Optical spectroscopy
Gated photon counter
PMT
Ablation laser
Pulse
valve
skimmer
CH4(5%)
&
Ar
W rod
or Pt rod
Excitation
pump
J’
hulaser
J”
Microwave
radiation
Single freq. tunable
laser radiation
repopulate
Radio-frequency
Well collimated
molecular beam
J”
PPMODR(Experimental)
Microwave Radiation Source
FWMH: 50kHz with<<1mW power
Rubidium frequency standard
Frequency Sythesizer(0~20GHz)
Laser induced
fluorescence(LIF)
Active Frequency multiplier 4X or 2X
homemade E-field horn antenna(3cmX0.4cm)
Magnetic sheild box
Probe beam (~20mW)
Pump beam~200mW
Examples 1
WC
WC: Electron electric dipole moment(eEDM) Measurement
1J.
Lee, E.R. Meyer, R. Paudel, J.L. Bohn and A.E. Leanhardt, J. Mod. Opt. 56,
2005, (2009).
W-doubling õΔ~1kHz
Prediction
2F.
Wang and T.C. Steimle, J. Chem. Phys. 134, 201106 (2011).
W-doubling õΔ<2MHz
Optical Spectroscopy
WC X3D1 (v=0)
J=2
+
-
Microwave Frequency(~60GHz)
J=1
-
+
W-Doubling
WC – Spectra with PPMODR
Microwave power:10mW
FWHM:400kHz
J=3
[17.6]2(v=1)
+/-
LIF
J=2
+
-
A B C D
J=1
+
X3D1 (v=0)
W-doubling õΔ=0.385(13)MHz
2.31MHz
1.54MHz
Why Imag. ≈ Ielec.?
Possible reasons:
A. Magnetic dipole transition probability(X3D1)
B. Mix two nearly degenerate energy levels
due to stray electric field (W-doublet)
A. Magnetic dipole transition probability (X3D1)
Imag. ≈ Ielec.
Rabi cycles
wt≥1
(Rabi frequency and transit time)
Rabi frequency wmag..=2p*mab(mag.)*Bfield/h
b
wRabi
Rabi frequency welec.=2p*mab(elec.)*Efield/h
a
Magnetic dipole moment: mab(mag.)=(gLL+gsS)mB=0.022mB=2.04*10-25J/T
Electric dipole moment:
Energy density r 
E field 
Bfield 
P
Area  c
2r
0
Efield
c
L=2,S=-1, gLL+gsS0
mab(elec.)=3.90D=1.30*10-29C m
r=3.3*10-7 J/m3
Microwave power 10mW
Area=1.0 cm2
Transit time t=30ms
E-field=273.0V/m
B-field=9.1*10-7 T
w
elec .
t  1009.0
w t  0.018  1
Imag should be small.
m ag .
A. Magnetic dipole transition probability (X3D1)
w
elec .
w
t  1009.0
m ag .
t  0.018  1
J=1
X3D1 (v=0)
0.1% mixing of the nearly
degenerate W-doublet levels
+
1.54MHz
B. Mix two energy levels due to stray electric field (J=1, Wdoublet)
.
How big is the stray electric field
for 0.1% mixing?
 H 11

 H 21
H 12  
1.54

H 22   0.9818 E stray
H 12  H 21 ( M H z ) 
ΨN=C+Ψ++ C-Ψ-
0.9818 E
m ( D ) E (V / cm ) M J W
J  J  1
Basis function |LSWJMJ>
stray
0



ΨN-=-0.999Ψ--0.032Ψ+
ΨN+=0.032Ψ--0.999Ψ+
0.0322*100%≈0.1%
0.50348
m=3.9D
Estray ≈0.05V/cm
Examples 2
PtC
Experimental Pt bonding investigation:
nuclear spin-rotation interaction
195PtC
X1S+ (v=0)
F
J=2
5/2
3/2
Microwave Frequency(~60GHz)
J=1
J=0
3/2
1/2
Microwave Frequency(~30GHz)
1/2
195Pt(I=1/2)
PtC – Spectra with PPMODR
195PtC(I=1/2)
A 1P
J=3
195PtC
5/2
7/2
A
LIF
5/2
J=2
A
3/2
1/2
J=1
Cieff=0.138(12)MHz
3/2
X 1S +
Summary
PPMODR has been implemented.
WC
Precise W-doubling parameter has been determined
Unusual intensity observed.
Possible reasons have been addressed.
PtC
Spin-rotation interaction parameter has been determined
Future Plans: AuX, ThX (X=C, F,O,S)