EML 4500 FINITE ELEMENT ANALYSIS AND DESIGN

Download Report

Transcript EML 4500 FINITE ELEMENT ANALYSIS AND DESIGN

CONVECTION BC
• Convection Boundary Condition
– Happens when a structure is surrounded by fluid
– Does not exist in structural problems
– BC includes unknown temperature (mixed BC)
Wall
qh
T
T
qh  hS(T  T)
Fluid Temperature
Convection Coefficient
– Heat flow is not prescribed. Rather, it is a function of temperature on
the boundary, which is unknown
• 1D Finite Element
– When both Nodes 1 and 2 are convection boundary
 q1  hAT1  hAT1


q2  hAT2  hAT2
T1
T2
T1
T2
1
EXAMPLE (CONVECTION ON THE BOUNDARY)
• Element
equation
T 1Ґ
T1
h1
(1)
kA  1 1  T1  q1 
    (1) 


L  1 1  T2  q2 
T2
1
T3
2
h3
T 3Ґ
(2)
kA  1 1 T2  q2 
    (2) 


L  1 1  T3  q3 
• Balance of heat flow
(1)

– Node 1: q1  h1A(T1  T1 )
(1)
(2)
– Node 2: q2  q2  0
(2)

– Node 3: q3  h3 A(T3  T3 )
• Global matrix equation

 1 1 0   T1   h1A(T1  T1 ) 
kA 

  
1 2 1 T2   
0


L 
 0 1 1  T3  h3 A(T3  T3 )
2
EXAMPLE cont.
• Move unknown nodal temperatures to LHS
kA
 kA

h
A

1
L
L

2kA
  kA

L
L

kA

0


L



  T1   h1AT1 
kA    


T

0
 2 

L   

T
h
AT

 3  3 3 
kA
 h3 A 

L
0
• The above matrix is P.D. because of additional positive terms
in diagonal
• How much heat flow through convection boundary?
– After solving for nodal temperature, use
q1(1)  h1A(T1  T1 )
• This is convection at the end of an element
3
EXAMPLE 5.5: FURNACE WALL
• Firebrick
k1=1.2W/m/oC
hi=12W/m2/oC
• Insulating brick
k2=0.2W/m/oC
ho=2.0W/m2/oC
Insulating
brick
Firebrick
Ta = 20 C
Tf = 1,500
C
hi
x
0.12 m
0.25 m
0   T1  18,000 
16.8 4.8
 4.8 6.47 1.67  T    0 


 2 
 0
1.67 3.67  T3   40 
{T } T  {1,411 1,190 552}C Convection
No heat flow
boundary
1,500 C
ho
Convection
boundary
20 C
x
2
q(2)

h
(T

T
)


1054
W/m
3
0
a
3
Tf
T1
hi
T2
1
T3
2
ho
Ta
4
CONVECTION ALONG A ROD
• Long rod is submerged into a fluid
• Convection occurs across the entire surface
• Governing differential equation
d 
dT 

kA

AQ

hP
T
 T  0, 0  x  L
g


dx 
dx 


P  2(b  h)
Convection
Fluid T 
b
qi(e )
j
i
xi
h
q(je )
Convection
xj
5
CONVECTION ALONG A ROD cont.
• DE with approximate temperature
d 
dT 

kA

  AQg  hP T  T  R(x)
dx 
dx 


• Minimize the residual with interpolation function Ni(x)
 d 

dT 

x  dx  kA dx   AQg  hP(T  T) Ni (x)dx  0

i 
xj
• Integration by parts
xj
xj
xj
xj
xj
dT
dT dNi
kA
Ni (x)   kA
dx   hPTNidx    AQgNi (x)dx   hPT Nidx
dx
dx dx
xi
xi
xi
xi
x
i
6
CONVECTION ALONG A ROD cont.
• Substitute interpolation scheme and rearrange
xj
x
j
dNj  dNi
 dNi
i i  TN
j j )Ni dx
x kA  Ti dx  Tj dx  dx dx  x hP(TN
i
i
xj
  (AQg  hPT  )Ni dx  q(x j )Ni (x j )  q(x i )Ni (x i )
xi
• Perform integration and simplify
Tj 
kA
(e)  Ti
(e)
(e)
T

T

hpL


Q

q




i
j
i
i
L(e)
3
6


xj

Q(e)

(AQ

hPT
)Ni (x)dx
i
 g
xi
• Repeat the same procedure with interpolation function Nj(x)
7
CONVECTION ALONG A ROD cont.
• Finite element equation with convection along the rod
 kA
 (e)
L
 1 1 hPL(e)
 1 1   6


(e)
(e)
2 1   Ti  Qi  qi 
 1 2  T   Q(e)  q(e) 

   j   j
j 

(e)
(e)
[k (e)

}  {q(e) }
T ]  [k h ]  T  {Q
• Equivalent conductance matrix due to convection
hPL(e)
k  
6
(e)
h
 2 1
 1 2


• Thermal load vector
(e)
(e) 
Q
AQ
L

hPL
T


i
g
(e)
{Q }    
2
Q j 
1

1
8
EXAMPLE: HEAT FLOW IN A COOLING FIN
• k = 0.2 W/mm/C, h = 2104 W/mm2/C
• Element conductance matrix
0.2  200  1 1 2  10 4  320  40 2 1
[k ]  [k ] 



 1 2
40
6

1
1




(e)
T
(e)
h
• Thermal load vector
Convection
T  = 30 C
2  10  320  40  30 1
{Q } 

2
1
4
(e)
160 mm
• Element 1
330 C
x
1.25 mm
Insulated
120 mm
T1
T2
1
T3
2
T4
3
9
EXAMPLE: HEAT FLOW IN A COOLING FIN cont.
• Element conduction equation
 1.8533 0.5733   T1  38.4  q1(1) 
 
 
– Element 1  0.5733 1.8533  T2  38.4  q(1)
2 

 1.8533 0.5733  T2  38.4  q(2)
2
 
   (2) 
– Element 2 

 0.5733 1.8533  T3  38.4  q3 

1.8533 0.5733  T3  38.4 q(3)

3
– Element 3
 0.5733 1.8533  T   38.4    (3) 

 4 
 q4 
• Balance of heat flow
– Node 1
q1(1)  Q1
– Node 2
(2)
q(1)
2  q2  0
– Node 3
(2)
q(2)

q
3
3 0
– Node 4

q(3)
4  hA(T  T4 )
10
EXAMPLE: HEAT FLOW IN A COOLING FIN cont.
• Assembly
38.4  Q1
0
0   T1  

1.853 .573

 .573 3.706 .573
76.8
0  T2  


   

76.8
 0
.573 3.706 .573  T3  


  

0
.573 1.853  T4  38.4  hA(T  T4 )
 0
• Move T4 to LHS and apply known T1 = 330
0
0  330  38.4  Q1 
1.853 .573
  76.8 
 .573 3.706 .573
T2 
0 






 

 0
.573 3.706 .573   T3   76.8 


0
.573 1.893  
 0
 39.6 

 T4 
 
• Move the first column to RHS after multiplying with T1=330
0  T2  265.89 
3.706 .573
 .573 3.706 .573  T    76.8 


 3 
 0
.573 1.893  T4   39.6 
11
EXAMPLE: HEAT FLOW IN A COOLING FIN cont.
• Solve for temperature
T1  330C, T2  77.57C, T3  37.72C, T4  32.34C
350
300
250
200
150
100
50
0
0
40
80
120
12