Transcript Slide 1
CONSIDERATIONS ABOUT THE ROLE OF ATMOSPHERIC STABILITY IN CFD MODELS C. Montavon, ANSYS UK © 2010 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary Contents Why Effects Atmospheric stability •Stable standard atmosphere in free stream •Surface heat fluxes How •Mountain waves •Buoyancy terms in •Possible changes in flow momentum and topology •Low Froude number turbulence equations •Affects When •Mixing •Boundary layer height •Always, •Boundary layer •More or less so depending on regeneration surface stability © 2010 ANSYS, Inc. All rights reserved. 2 ANSYS, Inc. Proprietary How: Stability implementation • Continuity • Momentum gravity waves U i U kU i p eff t xk xi x j U U j i x xi j g h h i 3 h • Turbulence quantities (e.g. k-e) U j k T k k t x j x j k x j P e G G eff g H h z 2 e T e e e C 1e max G , 0 U j e C 1e P C 2 e e k t x j x j e x j k k • Energy (potential temperature) T U j t x j x j C p x j © 2010 ANSYS, Inc. All rights reserved. 3 mixing, boundary layer height ANSYS, Inc. Proprietary Effects: Mountain waves Potential temperature © 2010 ANSYS, Inc. All rights reserved. 4 ANSYS, Inc. Proprietary Effect: change in flow topology Neutral Stable Low Froude number •High terrain elevation •Strong stability •Low wind speed © 2010 ANSYS, Inc. All rights reserved. 5 ANSYS, Inc. Proprietary u* / f L Effect: reduced boundary layer height, reduced mixing • Equilibrium profiles on flat terrain, roughness z0, Coriolis parameter f 1 0.3 Nicholls,-9.7 1985 K /km model, model, -9.7 K/km model, -9.8 K/km Nicholls, 1985 Hinze dT /dz = -9.7 K/km Duynkerke dT /dz = -9 K/km dT /dz = -9.7 K/km model, -9.8 K/km 1.0 dT /dz = -9 K/km Hinze 0.3 dT /dz = -8 K/km Duynkerke dT /dz = -6.5 K/km dT /dz = -8 K/km dT /dz = -6.5 K/km 0.2 z f/u * zf/u * z f/u * zf/u * 0.2 0.5 0.5 0.1 0.1 0 0.0 0 0 0 0 0.5 5 1 - u'w'/u k/u* *22 0 1.5 10 0.2 0.4 0.05 v'w'/u * f/u 2 T * 2 0.1 Eddy diffusivity Turbulence kinetic energy © 2010 ANSYS, Inc. All rights reserved. 0 6 ANSYS, Inc. Proprietary u* / f L Effect: reduced boundary layer height and momentum fluxes • Equilibrium profiles on flat terrain, roughness z0, Coriolis parameter f Nicholls, 1985 Increasing free stream stability Nicholls, 1985 0.3 dT /dz = -9.7 K/km dT /dz = -9.7 K/km dT /dz = -9 K/km 0.3 dT /dz = -8 K/km dT /dz = -9 K/km dT /dz = -6.5 K/km dT /dz = -8 K/km dT /dz = -6.5 K/km 0.2 z f/u * z f/u * 0.2 0.1 0.1 0 0 0 0.5 - u'w'/u * 1 0 1.5 2 0.4 0.2 v'w'/u * 2 Vertical momentum fluxes • Reduction of fluxes expected slower boundary layer regeneration downstream of forests or large arrays © 2010 ANSYS, Inc. All rights reserved. 7 ANSYS, Inc. Proprietary Effect: Boundary layer height 0.8 0.7 0.7-0.8 0.6 0.6-0.7 0.5 0.5-0.6 h/(u*/f) 0.4 0.4-0.5 0.3 0.3-0.4 0.2 0.2-0.3 0.1 N / f 0 S1 0.1-0.2 0-0.1 25 75 Increasing free stream stability 100 1 ln u* / f L Increasing surface stability Source: C. Montavon, 1998, Simulation of atmospheric flows over complex terrain for wind power potential assessment, Ph D thesis, EPF Lausanne, http://library.epfl.ch/en/theses/?nr=1855 © 2010 ANSYS, Inc. All rights reserved. 8 ANSYS, Inc. Proprietary Example of An Suidhe Normalised wind speed Normalised TI 50m 30m RMS error [%] average over anemometers average highest meas. Heights average lowest meas. Heights Wind speed ratio TI ratio 8.9 12.8 6.6 7.6 12.0 18.4 © 2010 ANSYS, Inc. All rights reserved. 10m 9 ANSYS, Inc. Proprietary Stability in ANSYS CFD • Free stream stability tested as part of WindModeller developments • Preliminary results – Validation successful of mountain waves from 2D theoretical test case (witch of Agnesi mountain profile) – Application on real terrain (An Suidhe, Scotland), see poster session for details inclusion of stability helped improve modelling accuracy, particularly on the turbulence intensity predictions also observed strong sensitivity of results to domain vertical extent when including stability. More work required to find best configuration for top boundary condition. © 2010 ANSYS, Inc. All rights reserved. 10 ANSYS, Inc. Proprietary