Transcript Slide 1
Elastic Collisions • Review Impulse/Momentum • 3 cases – Inelastic Collision x – Elastic Collision – Indeterminate x • Elastic Collision – first principles • Elastic Collision – Relative velocity equation • Other Elastic examples Review – Impulse/Momentum • Collisions F12 = force on 1 due to 2 1 2 • 𝐹12 = −𝐹21 𝑏𝑦 𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 • 𝐹12 ∆𝑡 = −𝐹21 ∆𝑡 𝐼𝑚𝑝𝑢𝑙𝑠𝑒1 = 𝐼𝑚𝑝𝑢𝑙𝑠𝑒2 • ∆𝑃1 = −∆𝑃2 (𝑚1 𝑣1′ − 𝑚1 𝑣1 ) = −(𝑚2 𝑣2′ − 𝑚2 𝑣2 ) • 𝑃1 + 𝑃2 = 𝑃1′ + 𝑃2 ′ 𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣1′ + 𝑚2 𝑣2 ′ Conservation of Momentum 𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣1′ + 𝑚2 𝑣2 ′ • Too many variables – 3 possibilities – Inelastic – eliminate variable 𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣′ + 𝑚2 𝑣′ – Elastic - generate 2nd equation 𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣1′ + 𝑚2 𝑣2 ′ 1 1 1 1 𝑚1 𝑣1 2 + 𝑚2 𝑣2 2 = 𝑚1 𝑣1 ′2 + 𝑚2 𝑣2 ′2 2 2 2 2 – Indeterminate - need more info Simple Elastic Collision • Two carts with equal mass m • One traveling at v1 m/s, other at 0 m/s • Conserve momentum and energy: 𝑚𝑣1 + 𝑚0 = 𝑚𝑣1′ + 𝑚𝑣2′ (𝑃) 1 1 1 1 𝑚𝑣1 2 + 𝑚02 = 𝑚𝑣1 ′2 + 𝑚𝑣2 ′2 2 2 2 2 • Simplify: 𝑣1 = 𝑣1′ + 𝑣2′ 𝑣1 2 = 𝑣1 ′2 + 𝑣2 ′2 (𝐾𝐸) (𝑃) (𝐾𝐸) • Substitute 1st equation in 2nd equation: 𝑣2′ = 𝑣1 − 𝑣1′ 2 ′2 𝑣1 = 𝑣1 + 𝑣1 − ′ 2 𝑣1 (𝑃) (𝐾𝐸 + 𝑃) Simple Elastic Collision (cont) • Previously: 𝑣2′ = 𝑣1 − 𝑣1′ 𝑣1 2 = 𝑣1 ′2 + 𝑣1 − 𝑣1′ (𝑃) 2 (𝐾𝐸 + 𝑃) • Expand 2nd equation and simplify: 𝑣1 2 = 𝑣1 ′2 + 𝑣1 2 − 2𝑣1 𝑣1′ + 𝑣1 ′2 (𝐾𝐸 + 𝑃) 0 = 2𝑣1 ′2 − 2𝑣1 𝑣1′ 𝑣1 ′2 = 𝑣1 𝑣1′ • Solutions 𝑣1′ = 0 𝑣1′ = 𝑣1 → → 𝑣2′ = 𝑣1 𝑣2′ = 0 1𝑠𝑡 𝑠𝑡𝑜𝑝𝑠, 2𝑛𝑑 𝑡𝑎𝑘𝑒𝑠 𝑜𝑟𝑖𝑔. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 1𝑠𝑡 𝑡ℎ𝑒𝑦 𝑚𝑖𝑠𝑠𝑒𝑑 𝑑𝑢𝑚𝑏 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 Relative velocity equation • Can use as substitute for conservation of energy in elastic collisions • Much easier to solve! • Derivable from conservation of momentum + conservation of energy Relative velocity equation • Conserve momentum and energy: 𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣1′ + 𝑚2 𝑣2′ (𝑃) 1 1 1 1 𝑚1 𝑣1 2 + 𝑚2 𝑣2 2 = 𝑚1 𝑣1 ′2 + 𝑚2 𝑣2 ′2 (𝐾𝐸) 2 2 2 2 • Rearrange both equations: 𝑚1 𝑣1 − 𝑣1′ = 𝑚2 𝑣2 ′ − 𝑣2 (𝑃) 𝑚1 𝑣1 2 − 𝑣1 ′2 = 𝑚2 𝑣2 ′2 − 𝑣2 2 • • Factor energy equation: 𝑚1 𝑣1 − 𝑣1′ = 𝑚2 𝑣2 ′ − 𝑣2 (𝑃) 𝑚1 𝑣1 − 𝑣1′ 𝑣1 + 𝑣1′ = 𝑚2 𝑣2 ′ − 𝑣2 𝑣2′ + 𝑣2 Eliminate what’s common to both: 𝑚1 𝑣1 − 𝑣1′ = 𝑚2 𝑣2 ′ − 𝑣2 𝑣1 + 𝑣1′ = 𝑣2′ + 𝑣2 • (𝐾𝐸) (𝑃) (𝑟𝑒𝑙 𝑣𝑒𝑙) Conservation of momentum and relative velocity equation: 𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣1′ + 𝑚2 𝑣2′ 𝑣1 − 𝑣2 = 𝑣2′ − 𝑣1′ (𝑃) (𝑟𝑒𝑙 𝑣𝑒𝑙) (𝐾𝐸) Relative velocity equation • Instead of solving this: 𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣1′ + 𝑚2 𝑣2′ (𝑃) 1 1 1 1 𝑚1 𝑣1 2 + 𝑚2 𝑣2 2 = 𝑚1 𝑣1 ′2 + 𝑚2 𝑣2 ′2 (𝐾𝐸) 2 2 2 2 • You may substitute this 𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣1′ + 𝑚2 𝑣2′ 𝑣1 − 𝑣2 = 𝑣2′ − 𝑣1′ (𝑃) (𝑟𝑒𝑙 𝑣𝑒𝑙) Which is a lot easier to solve! Simple Elastic Collision (again) • Two carts with equal mass m • One traveling at v1 m/s, other at 0 m/s • Conserve momentum and energy relative velocity equation: 𝑚𝑣1 + 𝑚0 = 𝑚𝑣1′ + 𝑚𝑣2′ 𝑣1 − 𝑣2 = 𝑣2′ − 𝑣1′ • Simplify: 𝑣1 = 𝑣1′ + 𝑣2′ 𝑣1 = 𝑣2′ − 𝑣1′ (𝑃) 𝑟𝑒𝑙 𝑣𝑒𝑙 𝑃 𝑟𝑒𝑙 𝑣𝑒𝑙 • Add both equations: 2𝑣1 = 2𝑣2′ 𝑣2′ = 𝑣1 𝑣1′ = 0 Same result as before 2009 “Conserve-the-Wrong-Thing” Contest • In collision, always conserve this: m1v1 + m2v2 = m1v1’ + m2v2’ • If elastic, also conserve this: ½ m1v12 + ½ m2v22 = ½ m1v1’2 + ½ m2v2’2 Or use relative velocity equation • Guaranteed way of losing 8 points in exam! Elastic Example 1 • Conservation of momentum and relative velocity eqn: 𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣1′ + 𝑚2 𝑣2′ 𝑣1 − 𝑣2 = 𝑣2′ − 𝑣1′ (𝑃) 𝑟𝑒𝑙 𝑣𝑒𝑙 • Plug in numbers: 0.45 𝑘𝑔 3 𝑚 𝑠 + 0 = 0.45 𝑘𝑔 𝑣1′ + 0.9 𝑘𝑔 𝑣2′ 3 𝑚 𝑠 − 0 = 𝑣2′ − 𝑣1′ (𝑃) 𝑟𝑒𝑙 𝑣𝑒𝑙 • Need to solve 2 simple equations: 1 2 Elastic Example 1 (cont) • Previous page: 0.45 𝑘𝑔 3 𝑚 𝑠 = 0.45 𝑘𝑔 𝑣1′ + 0.9 𝑘𝑔 𝑣2′ 3 𝑚 𝑠 = 𝑣2′ − 𝑣1′ (𝑃) 𝑟𝑒𝑙 𝑣𝑒𝑙 • Solution (my weird way): 0.45 𝑘𝑔 3 𝑚 𝑠 = 0.45 𝑘𝑔 𝑣1′ + 0.9 𝑘𝑔 𝑣2′ 0.45 𝑘𝑔 3 𝑚 𝑠 = 0.45 𝑘𝑔 𝑣2′ − 0.45 𝑘𝑔 𝑣1′ • Add both equations: 2.7 𝑘𝑔 𝑚 𝑠 = 1.35 𝑘𝑔 𝑣2′ 𝑣2′ = 2 𝑚 𝑠 1 • Substituting in rel. vel. 𝑣1′ = −1 𝑚 𝑠 Note negative sign – 1 bounces back! 2 Elastic Example 2 • Conservation of momentum and relative velocity eqn: 𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣1′ + 𝑚2 𝑣2′ 𝑣1 − 𝑣2 = 𝑣2′ − 𝑣1′ (𝑃) 𝑟𝑒𝑙 𝑣𝑒𝑙 • Plug in numbers: 0.06 𝑘𝑔 2.5 𝑚 𝑠 + 0.09 𝑘𝑔 1.15 𝑚 𝑠 = 0.06 𝑘𝑔 𝑣1′ + 0.09 𝑘𝑔 𝑣2′ 2.5 𝑚 𝑠 − 1.15 𝑚 𝑠 = 𝑣2′ − 𝑣1′ 1 𝑟𝑒𝑙 𝑣𝑒𝑙 2 (𝑃) Elastic Example 2 (cont) • Previous page: 0.06 𝑘𝑔 2.5 𝑚 𝑠 + 0.09 𝑘𝑔 1.15 𝑚 𝑠 = 0.06 𝑘𝑔 𝑣1′ + 0.09 𝑘𝑔 𝑣2′ 1.35 𝑚 𝑠 = 𝑣2′ − 𝑣1′ • My devious tricks: 0.06 𝑘𝑔 2.5 𝑚 𝑠 + 0.09 𝑘𝑔 1.15 𝑚 𝑠 = 0.06 𝑘𝑔 𝑣1′ + 0.09 𝑘𝑔 𝑣2′ 0.06 𝑘𝑔 1.35 𝑚 𝑠 = 0.06 𝑘𝑔 𝑣2′ − 0.06 𝑘𝑔 𝑣1′ • Add both equations: 0.06 𝑘𝑔 2.5 𝑚 𝑠 + 0.09 𝑘𝑔 1.15 𝑚 𝑠 + 0.06 𝑘𝑔 1.35 𝑚 𝑠 = 0.09 𝑘𝑔 𝑣2′ + 0.06 𝑘𝑔 𝑣2′ 0. 3345 𝑘𝑔 𝑚 𝑠 = 0.15 𝑘𝑔 𝑣2′ 𝑣2′ = 2.23 𝑚 𝑠 𝑣1′ = 0. 88 𝑚 𝑠 1 2 Elastic Example 3 • Conservation of momentum and relative velocity eqn: 𝑚1 𝑣1 + 𝑚2 𝑣2 = 𝑚1 𝑣1′ + 𝑚2 𝑣2′ 𝑣1 − 𝑣2 = 𝑣2′ − 𝑣1′ (𝑃) 𝑟𝑒𝑙 𝑣𝑒𝑙 • Plug in numbers: 450 𝑘𝑔 4.5 𝑚 𝑠 + 550 𝑘𝑔 3.7 𝑚 𝑠 = 450 𝑘𝑔 𝑣1′ + 550 𝑘𝑔 𝑣2′ 4.5 𝑚 𝑠 − 3. 7 𝑚 𝑠 = 𝑣2′ − 𝑣1′ 𝑟𝑒𝑙 𝑣𝑒𝑙 (𝑃) Elastic Example 3 (cont) • Previous page: 4060 𝑘𝑔 𝑚 𝑠 = 450 𝑘𝑔 𝑣1′ + 550 𝑘𝑔 𝑣2′ 0.8 𝑚 𝑠 = 𝑣2′ − 𝑣1′ • Here we go again: 4060 𝑘𝑔 𝑚 𝑠 = 450 𝑘𝑔 𝑣1′ + 550 𝑘𝑔 𝑣2′ 450 𝑘𝑔 0.8 𝑚 𝑠 = 450 𝑘𝑔 𝑣2′ − 450 𝑘𝑔 𝑣1′ • Adding 4060 𝑘𝑔 𝑚 𝑠 + 360 𝑚 𝑠 = 550 𝑘𝑔 𝑣2′ + 450 𝑘𝑔 𝑣2′ 1000 𝑘𝑔 𝑣2′ = 4420 𝑘𝑔 𝑚 𝑠 𝑣2′ = 4.42 𝑚 𝑠 𝑣1′ = 3.62 𝑚 𝑠 1 2 Elastic Example 3 (cont) • Momentum change of 1 ∆𝑝1 = 𝑚1 𝑣1′ − 𝑚1 𝑣1 ∆𝑝1 = 450 kg 3.62 𝑚 𝑠 − 450 kg 4.5 𝑚 𝑠 ∆𝑝1 = −396 kg 𝑚 𝑠 • Momentum change of 2 ∆𝑝2 = 𝑚2 𝑣2′ − 𝑚2 𝑣2 ∆𝑝2 = 550 kg 4.42 𝑚 𝑠 − 550 kg 3.7 𝑚 𝑠 ∆𝑝1 = +396 kg 𝑚 𝑠 What 1 lost, 2 gained. Collisions in 2-dimensions • Conserve momentum in x and y direction 𝑚𝑣𝑎𝑥 + 𝑚𝑣𝑏𝑥 = 𝑚𝑣′𝑎𝑥 + 𝑚𝑣′𝑏𝑥 𝑚𝑣𝑎𝑦 + 𝑚𝑣𝑏𝑦 = 𝑚𝑣′𝑎𝑦 + 𝑚𝑣′𝑏𝑦 • Cancelling m’s and filling in numbers 3 𝑚 𝑠 + 0 = 𝑣′𝑎 cos(45) + 𝑣 ′ 𝑏 cos(45) 0 + 0 = 𝑣′𝑎 sin(45) + −𝑣 ′ 𝑏 sin 45 𝑣′𝑏 = 𝑣′𝑎 • y equation yields: • x equation yields: 2 𝑣′𝑎 cos(45) = 3 𝑚 𝑠 𝑣′𝑎 = 𝑣′𝑏 = 2.12 𝑚 𝑠 (𝑛𝑜𝑡𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑖𝑔𝑛)