Transcript Document

1.7 – The Chain Rule
Composition of Functions:
The process of combining two or more functions in order to create
another function.
One function is evaluated at a value of the independent variable and
the result is substituted into the other function as the independent
variable.
The composition of functions f and g is written as:
π‘“βˆ˜π‘” π‘₯ =𝑓 𝑔 π‘₯
The composition of functions is a function inside another function.
1.7 – The Chain Rule
π‘“βˆ˜π‘” π‘₯ =𝑓 𝑔 π‘₯
Given: 𝑓 π‘₯ = 2π‘₯ + 3 π‘Žπ‘›π‘‘ 𝑔 π‘₯ = π‘₯ 2 + 5, find 𝑓 ∘ 𝑔 π‘₯ .
π‘“βˆ˜π‘” π‘₯ =𝑓 𝑔 π‘₯
= 2 π‘₯2 + 5 + 3
= 2π‘₯ 2 + 10 + 3
π‘“βˆ˜π‘” π‘₯ =𝑓 𝑔 π‘₯
= 2π‘₯ 2 + 13
Find 𝑔 ∘ 𝑓 π‘₯ .
π‘”βˆ˜π‘“ π‘₯ =𝑔 𝑓 π‘₯
=
2π‘₯ + 3
2
+5
4π‘₯ 2 + 6π‘₯ + 6π‘₯ + 9 + 5
π‘”βˆ˜π‘“ π‘₯ =𝑔 𝑓 π‘₯
= 4π‘₯ 2 + 12π‘₯ + 14
1.7 – The Chain Rule
π‘“βˆ˜π‘” π‘₯ =𝑓 𝑔 π‘₯
Given: 𝑓 π‘₯ = π‘₯ 3 + π‘₯ βˆ’ 6 π‘Žπ‘›π‘‘ 𝑔 π‘₯ = π‘₯ 2 + 2, find 𝑓 ∘ 𝑔 π‘₯ .
π‘“βˆ˜π‘” π‘₯ =𝑓 𝑔 π‘₯
=
π‘“βˆ˜π‘” π‘₯ =𝑓 𝑔 π‘₯
=
π‘₯2 + 2
π‘₯2 + 2
3
+ π‘₯2 + 2 βˆ’ 6
3
+ π‘₯2 βˆ’ 4
Find 𝑔 ∘ 𝑓 π‘₯ .
π‘”βˆ˜π‘“ π‘₯ =𝑔 𝑓 π‘₯
=
π‘₯3 + π‘₯ βˆ’ 6
2
+2
1.7 – The Chain Rule
Review of the Product Rule:
𝑦 = 3π‘₯ 3 + 2π‘₯ 2
2
= 3π‘₯ 3 + 2π‘₯ 2 3π‘₯ 3 + 2π‘₯ 2
𝑦′ = 3π‘₯ 3 + 2π‘₯ 2 9π‘₯ 2 + 4π‘₯ + 9π‘₯ 2 + 4π‘₯ 3π‘₯ 3 + 2π‘₯ 2
𝑦′ = 2 3π‘₯ 3 + 2π‘₯ 2 9π‘₯ 2 + 4π‘₯
𝑦 = 6π‘₯ 2 + π‘₯
3
= 6π‘₯ 2 + π‘₯ 6π‘₯ 2 + π‘₯ 6π‘₯ 2 + π‘₯
𝑦 β€² = 6π‘₯ 2 + π‘₯ 6π‘₯ 2 + π‘₯ 12π‘₯ + 1 + 6π‘₯ 2 + π‘₯ 12π‘₯ + 1 6π‘₯ 2 + π‘₯ + 12π‘₯ + 1 6π‘₯ 2 + π‘₯ 6π‘₯ 2 + π‘₯
𝑦 β€² = 6π‘₯ 2 + π‘₯
𝑦′ = 3 6π‘₯ 2 + π‘₯
2
12π‘₯ + 1 + 6π‘₯ 2 + π‘₯
2
2
12π‘₯ + 1 + 6π‘₯ 2 + π‘₯
2
12π‘₯ + 1
12π‘₯ + 1
𝑦 = 3π‘₯ 3 + 2π‘₯ 2
2
and 𝑦 = 6π‘₯ 2 + π‘₯
3
are composite functions.
1.7 – The Chain Rule
𝑦 = 3π‘₯ 3 + 2π‘₯ 2
𝑦 = 6π‘₯ 2 + π‘₯
2
𝑦′ = 2 3π‘₯ 3 + 2π‘₯ 2 9π‘₯ 2 + 4π‘₯
3
𝑦′ = 3 6π‘₯ 2 + π‘₯
2
12π‘₯ + 1
Additional Problems:
𝑦 = π‘₯ 3 + 2π‘₯
9
𝑦′ = 9 π‘₯ 3 + 2π‘₯
8
3π‘₯ 2 + 2
𝑦 = 5π‘₯ 2 + 1
4
𝑦′ = 4 5π‘₯ 2 + 1
3
10π‘₯
𝑦 = 2π‘₯ 5 βˆ’ 3π‘₯ 4 + π‘₯ βˆ’ 3
13
𝑦′ = 13 2π‘₯ 5 βˆ’ 3π‘₯ 4 + π‘₯ βˆ’ 3
12
10π‘₯ 4 βˆ’ 12π‘₯ 3 + 1
1.7 – The Chain Rule
𝑑𝑦 𝑑𝑦 𝑑𝑒
=
βˆ™
𝑑π‘₯ 𝑑𝑒 𝑑π‘₯
𝑑𝑦
Find 𝑑π‘₯ .
𝑦 = 𝑒3 βˆ’ 7𝑒2
𝑒 = π‘₯2 + 3
𝑑𝑒
𝑑𝑦
2
= 2π‘₯
= 3𝑒 βˆ’ 14𝑒
𝑑π‘₯
𝑑𝑒
𝑑𝑦
= 3𝑒2 βˆ’ 14𝑒 βˆ™ 2π‘₯
𝑑π‘₯
𝑑𝑦
= 3 π‘₯ 2 + 3 2 βˆ’ 14 π‘₯ 2 + 3 2π‘₯
𝑑π‘₯
𝑑𝑦
= 2π‘₯ π‘₯ 2 + 3 3 π‘₯ 2 + 3 βˆ’ 14
𝑑π‘₯
𝑑𝑦
= 2π‘₯ π‘₯ 2 + 3 3π‘₯ 2 + 9 βˆ’ 14
𝑑π‘₯
𝑑𝑦
= 2π‘₯ π‘₯ 2 + 3 3π‘₯ 2 βˆ’ 5
𝑑π‘₯
𝑒 = π‘₯2 + 3
𝑦 = 𝑒3 βˆ’ 7𝑒2
𝑦 = π‘₯2 + 3
3
βˆ’ 7 π‘₯2 + 3
𝑑𝑦
= 3 π‘₯2 + 3
𝑑π‘₯
2
2
2π‘₯ βˆ’ 14 π‘₯ 2 + 3 2π‘₯
𝑑𝑦
= 2π‘₯ π‘₯ 2 + 3 3 π‘₯ 2 + 3 βˆ’ 14
𝑑𝑒
𝑑𝑦
= 2π‘₯ π‘₯ 2 + 3 3π‘₯ 2 + 9 βˆ’ 14
𝑑𝑒
𝑑𝑦
= 2π‘₯ π‘₯ 2 + 3 3π‘₯ 2 βˆ’ 5
𝑑𝑒
1.7 – The Chain Rule
Find the equation of the tangent line at π‘₯ = 1 for the previous problem.
𝑦 = π‘₯2 + 3
3
βˆ’ 7 π‘₯2 + 3
𝑑𝑦
= 2π‘₯ π‘₯ 2 + 3 3π‘₯ 2 βˆ’ 5
𝑑π‘₯
π‘₯=1
π‘šπ‘‘π‘Žπ‘› =
𝑦 = βˆ’48
𝑑𝑦
= βˆ’16
𝑑π‘₯
𝑦 βˆ’ 𝑦1 = π‘š π‘₯ βˆ’ π‘₯1
𝑦 βˆ’ βˆ’48 = βˆ’16 π‘₯ βˆ’ 1
𝑦 + 48 = βˆ’16π‘₯ + 16
𝑦 = βˆ’16π‘₯ βˆ’ 32
2
1.7 – The Chain Rule
The position of a particle moving along a coordinate line is, 𝑠 𝑑 = 12 + 4𝑑, with s in
meters and t in seconds. Find the rate of change of the particle's position at 𝑑 = 6
seconds.
𝑠 𝑑 = 12 + 4𝑑
𝑠 𝑑 = 12 + 4𝑑
1
2
𝑑𝑠
1
β€²
= 𝑠 𝑑 = 12 + 4𝑑
𝑑𝑑
2
𝑑𝑠
2
= 𝑠′ 𝑑 =
𝑑𝑑
12 + 4𝑑
𝑑𝑠
π‘Žπ‘‘ 𝑑 = 6,
= 𝑠′ 6 =
𝑑𝑑
1
βˆ’1 2
4
2
2
12 + 4 6
𝑑𝑠
1
β€²
= 𝑠 6 = π‘šπ‘’π‘‘π‘’π‘Ÿπ‘ /π‘ π‘’π‘π‘œπ‘›π‘‘π‘ 
𝑑𝑑
3
1
2
1.7 – The Chain Rule
The total outstanding consumer credit of a certain country can be modeled by 𝐢 π‘₯ =
0.21π‘₯ 4 βˆ’ 5.98π‘₯ 3 + 50.11π‘₯ 2 βˆ’ 18.29π‘₯ + 1106.47 , where C is billion dollars and x is
the number of years since 2000.
𝑑𝐢
a) Find .
𝑑π‘₯
b) Using this model, predict how quickly outstanding consumer credit will be rising in
2010.
a) 𝐢 π‘₯ = 0.21π‘₯ 4 βˆ’ 5.98π‘₯ 3 + 50.11π‘₯ 2 βˆ’ 18.29π‘₯ + 1106.47
𝑑𝐢
𝑑π‘₯
= 0.84π‘₯ 3 βˆ’ 17.94π‘₯ 2 + 100.22π‘₯ βˆ’ 18.29
b) π‘₯ = 2010 βˆ’ 2000 = 10 π‘¦π‘’π‘Žπ‘Ÿπ‘ 
𝑑𝐢
π‘Žπ‘‘ π‘₯ = 10, 𝑑π‘₯ = 0.84 10
3
βˆ’ 17.94 10
𝑑𝐢
= 29.91 π‘π‘–π‘™π‘™π‘–π‘œπ‘› π‘‘π‘œπ‘™π‘™π‘Žπ‘Ÿπ‘ /π‘¦π‘’π‘Žπ‘Ÿ
𝑑π‘₯
2
+ 100.22 10 βˆ’ 18.29
1.8 –Higher-Order Derivatives
Higher-order derivatives provide a method to examine how a rate-of-change
changes.
Notations
1.8 –Higher-Order Derivatives
Find the requested higher-order derivatives.
Find
𝑓 β€²β€²β€²
π‘₯ ,
𝑑3 𝑦
,
𝑑π‘₯ 3
𝑦 β€²β€²β€² .
𝑓 π‘₯ = 3π‘₯ 4 βˆ’ 5π‘₯ 3 + 8π‘₯ + 12
Find 𝑓
4
π‘₯ ,
𝑑4𝑦
,
𝑑π‘₯ 4
𝑦
4
𝑓 π‘₯ = 2π‘₯ 3 + 6π‘₯ 2 βˆ’ 57π‘₯
𝑓 β€² π‘₯ = 12π‘₯ 3 βˆ’ 15π‘₯ 2 + 8
𝑓 β€² π‘₯ = 6π‘₯ 2 + 12π‘₯ βˆ’ 57
𝑓 β€²β€² π‘₯ = 36π‘₯ 2 βˆ’ 30π‘₯
𝑓 β€²β€² π‘₯ = 12π‘₯ + 12
𝑓 β€²β€²β€² π‘₯ = 72π‘₯ βˆ’ 30
𝑓 β€²β€²β€² π‘₯ = 12
𝑓
4
π‘₯ =0
.
1.8 –Higher-Order Derivatives
Position, Velocity, and Acceleration
Velocity: the change in position with respect to a change in time. It is a rate of
change with direction.
The velocity function, 𝑣 𝑑 , is obtain by differentiating the position function with
respect to time.
𝑣 𝑑 =
𝑠′
𝑑𝑠
𝑑 =
𝑑𝑑
𝑠 𝑑 = 4𝑑 2 + 𝑑
𝑠 𝑑 = 5𝑑 3 βˆ’ 6𝑑 2 + 6
𝑣 𝑑 = 𝑠′(𝑑) = 8𝑑 + 1
𝑣 𝑑 = 𝑠′(𝑑) = 15𝑑 2 βˆ’ 12𝑑
1.8 –Higher-Order Derivatives
Position, Velocity, and Acceleration
Velocity: the change in position with respect to a change in time. It is a rate of
change with direction.
The velocity function, 𝑣 𝑑 , is obtain by differentiating the position function with
respect to time.
𝑣 𝑑 =
𝑠′
𝑑𝑠
𝑑 =
𝑑𝑑
𝑠 𝑑 = 4𝑑 2 + 𝑑
𝑠 𝑑 = 5𝑑 3 βˆ’ 6𝑑 2 + 6
𝑣 𝑑 = 𝑠′(𝑑) = 8𝑑 + 1
𝑣 𝑑 = 𝑠′(𝑑) = 15𝑑 2 βˆ’ 12𝑑
1.8 –Higher-Order Derivatives
Position, Velocity, and Acceleration
Acceleration: the change in velocity with respect to a change in time. It is a rate
of change with direction.
The acceleration function, π‘Ž 𝑑 , is obtain by differentiating the velocity function
with respect to time. It is also the 2nd derivative of the position function.
𝑑𝑣
𝑑2𝑠
β€²β€²
π‘Ž 𝑑 =𝑣 𝑑 =
=𝑠 𝑑 = 2
𝑑𝑑
𝑑𝑑
β€²
𝑠 𝑑 = 4𝑑 2 + 𝑑
𝑠 𝑑 = 5𝑑 3 βˆ’ 6𝑑 2 + 6
𝑣 𝑑 = 𝑠′(𝑑) = 8𝑑 + 1
𝑣 𝑑 = 𝑠′(𝑑) = 15𝑑 2 βˆ’ 12𝑑
π‘Ž 𝑑 = 𝑣 β€² 𝑑 = 𝑠 β€²β€² 𝑑 = 8
π‘Ž 𝑑 = 𝑣′ 𝑑 = 𝑠′′(𝑑) = 30𝑑 βˆ’ 12
1.8 –Higher-Order Derivatives
The position of an object is given by 𝑠 𝑑 = 2𝑑 2 + 8𝑑 , where s is measured in feet and
t is measured in seconds.
𝑑𝑠
𝑑𝑣
a) Find the velocity
and acceleration
functions.
𝑑𝑑
𝑑𝑑
b) What are the position, velocity, and acceleration of the object at 5 seconds?
a) 𝑣 𝑑 =
π‘Ž 𝑑 =
𝑑𝑠
= 4𝑑 + 8
𝑑𝑑
𝑑𝑣
=4
𝑑𝑑
b) 𝑠 5 = 2 5
2
+8 5
= 90 𝑓𝑒𝑒𝑑
𝑣 5 = 4 5 + 8 = 28 𝑓𝑒𝑒𝑑/𝑠𝑒𝑐
π‘Ž 5 = 4 feet/sec/sec or 𝑓𝑒𝑒𝑑/𝑠𝑒𝑐 2
1.8 –Higher-Order Derivatives
The position of a particle (in inches) moving along the x-axis after t seconds have
elapsed is given by the following equation: s(t) = t4 – 2t3 – 4t2 + 12t.
(a) Calculate the velocity of the particle at time t.
(b) Compute the particle's velocity at t = 1, 2, and 4 seconds.
(c) Calculate the acceleration of the particle after 4 seconds.
(d) When is the particle at rest?
a) 𝑣 𝑑 =
𝑑𝑠
= 4𝑑 3 βˆ’ 6𝑑 2 βˆ’ 8𝑑 + 12
𝑑𝑑
b) 𝑣 1 = 2 π‘–π‘›π‘β„Žπ‘’π‘ /𝑠𝑒𝑐
𝑣 2 = 4 π‘–π‘›π‘β„Žπ‘’π‘ /𝑠𝑒𝑐
𝑣 4 = 140 π‘–π‘›π‘β„Žπ‘’π‘ /𝑠𝑒𝑐
𝑑𝑣
c) π‘Ž 𝑑 =
= 12𝑑 2 βˆ’ 12𝑑 βˆ’ 8
𝑑𝑑
π‘Ž 4 = 136 𝑓𝑒𝑒𝑑/𝑠𝑒𝑐 2
d) 𝑣 𝑑 = 0 π‘Žπ‘‘ π‘Ÿπ‘’π‘ π‘‘
0 = 4𝑑 3 βˆ’ 6𝑑 2 βˆ’ 8𝑑 + 12
0 = 2𝑑 2 2𝑑 βˆ’ 3 βˆ’ 4 2𝑑 βˆ’ 3
0 = 2𝑑 βˆ’ 3
2𝑑 2 βˆ’ 4
3
𝑑 = , 1.414 𝑠𝑒𝑐.
2