No Slide Title

Download Report

Transcript No Slide Title

Fields and Waves Lesson 5.3

PLANE WAVE PROPAGATION Lossy Media Lale T. Ergene

Wave Equations for a Conducting Medium  2 ~

E

  2 ~

E

 0  2 ~

H

2 ~

H

 0 Homogenous wave equation for ~

E

Homogenous wave equation for ~

H

 ; propagation constant is complex

2  

 

c

  ' ' 

( '

  

j

' ' )

Propagation Constant

j

Attenuation constant Phase constant    2 '    1   

 

' ' '   2  1      

[Np/m]

(for a lossy medium)    2 '    1

 

' ' '   2  1      

[rad/m]

Solution of the Wave Equation The Electric Field in phasor form (only x component) 2 ~

d E x dz

2

 2 ~

E x

0 General solution of the differential equation for a lossy medium ~ ( )

x

~

E x

~

E x

E e x

0  (  )

z

E e x

0 (  )

z

forward traveling in +z direction backward traveling in -z direction

Intrinsic Impedance,

η c

The relationship between electric and magnetic field phasors is the same but the intrinsic impedance of lossy medium,

η c

is different If +z is the direction of the propagation ~

E

 

c a

z

intrinsic impedance

~

H

c

 ~

H

 1

c a

z

 ~

E

 

c

   '   1 

j

  ' ' '    /

Skin Depth, δ s shows how well an electromagnetic wave can penetrate into a conducting medium Skin Depth 

s

 1  [m] Perfect dielectric: σ=0 α=0 δ s =∞ Perfect Conductor: σ=∞ α=∞ δ s =0

Low-Loss Dielectric defined when ε’’/ε’<<1 practically if ε’’/ε’<10 -2, dielectric the medium can be considered as a low-loss 2 ' '

 

' 

 

2

[Np/m] [rad/m]

' 

 

c

  

[ Ω]

Good Conductor defined when ε’’/ε’>>1 practically if ε’’/ε’>100 , the medium can be considered as a good conductor    2 ' '  2 

[Np/m] [rad/m]

c

j

  ' '

j

)   

j

)  

[ Ω]

•When 10-2≤ ε’’/ε’ ≤100, the medium is considered as a “Quasi-Conductor”.

Do Problem 1

Average Power Density ~ ( )  ~

E x

 ~ ( )  (

E a x

0

x

 

x

 ~

E y

 ( ) 

y y

0

y

) )

z

~ ( )  1 

c a

Z

 ~

E

 1 

c

( 

E a

y

0

x

x

0

y

)  

z e

 Average power density

S av

 1 2 Re  ~

E

 ~

H

  

a

z

1 2 (

E x

0 2 

E y

0 2 )

e

 2 

z

Re    1 

c

    [W/m 2 ]

Average Power Density If η c is written in polar form 

c

 

c e j

 Average power density where

S av

a

z E

0 2 

c

2

e

 2 

z

cos  

E

0  

E x

0 2 

E y

0  2

Do Problem 2

[W/m 2 ]