Transcript Document
Thermally-Enhanced Forming of Mg Sheets Midterm Report, Dec. 5, 2008 - May 31, 2009 Robert H. Wagoner R. Wagoner, LLC 144 Valley Run Place Powell OH 43065 R. H. Wagoner 1 One-Year Project Goals (from Research Agreement, signed December 5, 2008) Task “1. Formulate a simple, approximate, constitutive equation based on simple testing temperature at a range of temperatures, rates and strains that is suitable for implementation in commercial sheet-forming softward (LS-Dyna, PamStamp, etc.). ” Status: First fitting completed. (For Posco AZ31B material provided.) To be improved. Task “2. Develop a thermo-mechanical FE model of a simplified sample part to be specified by Posco.” Status: The simplified model has been constructed in Abaqus and preliminary testing has been done. Will perform simulations using Abaqus for comparison with Posco simulation using LS-Dyna or PamStamp. Will refine thermal model. Task “3. Using the constitutive equation of Goal 2 and the FE model of Goal 3, identify optimal thermally-assisted forming strategies for the sample part.” Status: Not started yet. R. H. Wagoner 2 Summary Task I. Constitutive Equation – Measurement, fitting -A. Tensile testing – AUSTEM Mg AZ31B -B. Screening of material (use 118-5) -C. Tensile testing 150oC 200oC Posco Mg AZ31B 250oC 300oC 10-1/s x x x x 10-2.5/s x x x x 10-4/s x x x -D. Fitting to 3 laws: H, V, H&V -E. Verify const. eq. using FEA simulation (tensile to broken) Task II. Postech/Posco Formability Test Simulation -A. Put in ABAQUS model -B. Modify B.C. for convergence -C. Preliminary simulation using Posco/Postech constitutive eq* * K. Oh and et al., “Development of New Formability Test for Sheet Materials using Axiomatic Design”, submitted to J. Mater. Proc. Tech.. R. H. Wagoner 3 Summary of Properties of Mg sheets Material material used Thickness (mm) YS (MPa) UTS (MPa) Ave. Standard Dev. Ave. Standard Dev. Ave. Standard Dev. 108-5 0.996 0.007 197 5 284 3 118-5 0.973 0.009 197 3 284 2 336-3 1.020 0.007 196 2 280 2 R. H. Wagoner 4 Tensile Tests Results: AUSTEM vs. Posco R. H. Wagoner 5 Tensile Tests of Mg AZ31B at 150oC & 200oC 300 300 o o Mg AZ31B, 150 C Posco sample, t = 1mm AUSTEM sample, t = 2mm -1 10 /s,P 250 Mg AZ31B, 200 C Posco sample, t = 1mm AUSTEM sample, t = 2mm 250 -1 10 /s, A 200 10 150 10 -2.5 -2.5 True Stress (MPa) True Stress (MPa) 200 /s, P /s, A 100 -1 10 /s, P -1 150 10 /s, A 100 10 -2.5 /s, A 10 -4 -2.5 /s, P 10 /s, A -4 10 /s, P 50 50 -4 -4 10 /s, A 10 /s, P 0 0 0 0.2 0.4 True Strain R. H. Wagoner 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 True Strain 6 Tensile Tests of Mg AZ31B at 250oC & 300oC 300 300 o o Mg AZ31B, 200 C Posco sample, t = 1mm AUSTEM sample, t = 2mm 250 250 200 -1 10 /s, P True Stress (MPa) True Stress (MPa) 200 -1 150 10 /s, A 100 10 -2.5 Mg AZ31B, 300 C Posco sample, t = 1mm AUSTEM sample, t = 2mm 150 100 /s, A 10 -2.5 /s, P -1 -1 10 /s, A 10 /s, P 50 50 10 -4 -4 10 /s, A 10 /s, P 10 -2.5 -2.5 /s, A /s, P 0 0 0 0.2 0.4 True Strain R. H. Wagoner 0.6 0.8 1 0 0.2 0.4 0.6 True Strain 0.8 1 7 Tensile Tests Results of Posco Mg AZ31B Sheets R. H. Wagoner 8 Tensile Test of Mg AZ31B at 10-1/s & 10-2.5/s 250 250 o 150 C 200 200 o o 200 C 150 True Stress (MPa) True Stress (MPa) 150 C 100 150 o 200 C 100 o 250 C o 250 C o 300 C 50 50 o 300 C -1 10 /s, Posco sample Mg AZ31B 10 -2.5 /s, Posco sample Mg AZ31B 0 0 0 0.2 0.4 True Strain R. H. Wagoner 0.6 0.8 0 0.2 0.4 0.6 0.8 True Strain 9 Tensile Test of Mg AZ31B at 10-4/s 250 -4 10 /s, Posco sample Mg AZ31B True Stress (MPa) 200 150 o 150 C 100 o 200 C 50 o 250 C 0 0 0.2 0.4 0.6 0.8 True Strain R. H. Wagoner 10 Constitutive Equation Framework f ( , T)g()h(T) Hollomon: f H ( , T) K1 n g 0 m Voce: f V ( , T) K 2 (1 B * exp(C * )) H / V: f ( , T) f H (1 )f v Three versions: # Parameters (h(T) w/1 parameter) 1) Hollomon: 1 4 2) Voce: 0 5 3) H / V: R. H. Wagoner h (T) = 3 choices 0 1T 8 11 Fitting Procedure Least squares fit to 4, 5, or 8 parameters, using tensile data from 0.02 – u Software: SigmaPlot Starting parameters were varied in this order: K1, K2 = 50, 100, …, 1000 n = 0.05, 0.06, …, 0.5 m = 0.05, 0.06, …, 0.2 B = 0.01, 0.05,…, 0.5 C = 5, 10, …, 200 0= 0.1, 0.2, …,1 1 = 0.1, 0.2, …,1 Least squares fit => K1, n, m, K2, B, C, 0 , 1 (smallest standard dev.) R. H. Wagoner 12 Choice of Temperature Function h(T) h1 (T) 1 k * T 273 273 h 2 (T) 1 k1 * T 273 T 273 2 k2 *( ) 273 273 h 3 (T) exp( k * R. H. Wagoner T 273 ) 273 “T-1” “T-2” “T-exp” 13 Least-Squares Fits Para. H T-1 H T-2 H T-exp K1 (MPa) 293 440 n 0.1376 0.1313 (Current Best Eq.) V T-1 V T-2 V T-exp H&V T-1 H&V T-exp 492 2000 435 0.1304 0.6439 0.0943 K2 (MPa) 562 420 495 2000 2000 B 0.7169 0.4302 0.4545 0.8418 0.8648 C 1.5726 6.7328 5.7193 0.1636 0.6974 0.0917 0.0919 0.0916 0.0919 0.0917 0.0914 1.8603 0.7304 1.8512 1.8316 1.8594 -0.0890 0.0103 0.8692 0.9006 9 (MPa) 8 (MPa) m 0.0916 k 0.7319 0.0916 k1 -0.5699 -0.5629 k2 1.3951 1.3863 0 1 Stand. Dev. 11 (MPa) R. H. Wagoner 8 (MPa) 8 (MPa) 11 (MPa) 7 (MPa) 8 (MPa) 14 Fitting of Tensile Test at 150oC & 200oC 250 250 -1 -1 10 /s,H 10 /s,V o 200 C, Posco Mg AZ31B Hollomon vs. Voce Law (T-2) -1 10 /s, Exp 200 200 -2.5 10 True Stress (MPa) -1 -1 10 /s,V 10 /s,H /s, Exp -2.5 /s, H 10 -2.5 -1 10 /s, Exp /s, V True Stress (MPa) 10 150 -4 10 /s, Exp -4 -4 10 /s, H 10 /s, V 100 150 10 10 100 -2.5 -2.5 /s, H 10 -2.5 /s, V /s, Exp -4 -4 10 /s, H 10 /s, V -4 10 /s, Exp 50 50 o 150 C, Posco Mg AZ31B Hollomon vs. Voce Law (T-2) 0 0 0 0.03 0.06 0.09 True Strain R. H. Wagoner 0.12 0.15 0 0.03 0.06 0.09 0.12 0.15 True Strain 15 Fitting of Tensile Test at 250oC & 300oC 250 250 o o 250 C, Posco Mg AZ31B Hollomon vs. Voce Law (T-2) 300 C, Posco Mg AZ31B Hollomon vs. Voce Law (T-2) 200 True Stress (MPa) True Stress (MPa) 200 150 -1 10 /s, Exp -1 10 /s,H -1 10 /s,V 100 10 -2.5 /s, Exp 10 -2.5 /s, H 10 150 -1 100 10 /s, Exp -1 10 /s,H 10-1/s,V -2.5 /s, V -4 -4 10 /s, H 10 /s, V 10 50 -2.5 /s, H 10 -2.5 /s, V 50 -2.5 10 -4 10 /s, Exp 0 /s, Exp 0 0 0.03 0.06 0.09 True Strain R. H. Wagoner 0.12 0.15 0 0.03 0.06 0.09 0.12 0.15 True Strain 16 Test of Best-Fit Constitutive Equations Tensile test simulations: • FEM model, using ABAQUS software • Uniform temperature distribution • Solid element: C3D8R • Material property: Voce Law – (T-2) R. H. Wagoner 17 Tensile test of Mg AZ31B – Voce (T-2) 250 250 o o 200 C, Posco Mg AZ31B 150 C, Posco Mg AZ31B FEA / VOCE Expt. -1 10 /s 150 -2.5 10 FEA / VOCE Expt. 200 Eng Stress (MPa) Eng Stress (MPa) 200 /s 100 150 -1 10 /s 100 10 -2.5 /s -4 10 /s 50 50 -4 10 /s 0 0 0 0.2 0.4 Eng Strain R. H. Wagoner 0.6 0.8 0 0.2 0.4 0.6 0.8 Eng Strain 18 Tensile test of Mg AZ31B – Voce (T-2) 250 250 o o 300 C, Posco Mg AZ31B 250 C, Posco Mg AZ31B FEA / VOCE Expt. FEA / VOCE Expt. 200 Eng Stress (MPa) Eng Stress (MPa) 200 150 100 150 100 -1 10 /s -1 10 /s 50 10 -2.5 50 /s 10 -2.5 /s -4 10 /s 0 0 0 0.2 0.4 Eng Strain R. H. Wagoner 0.6 0.8 0 0.2 0.4 0.6 0.8 Eng Strain 19 PosTech / Posco Formability Test Simulation R. H. Wagoner 20 Simulation of Stamping Process ABAQUS/Standard • Material: 340BH* Thickness = 0.738 mm * 605.85( 0.01016)0.2282 • Contact: Friction coefficient: 0.15* • The z-coordinates of the nodes in blankholder which were not 0 were changed to 0. * K. Oh and et al., “Development of New Formability Test for Sheet Materials using Axiomatic Design”, submitted to J. Mater. Proc. Tech.. R. H. Wagoner 21 Comparison: Current Results and Oh paper*, Fig. 14 D D C A A C B Current results B Oh paper* Fig. 14(c) Minor strain distribution Holding force = 300kN Drawing depth = 60 mm * K. Oh and et al., “Development of New Formability Test for Sheet Materials using Axiomatic Design”, submitted to J. Mater. Proc. Tech.. R. H. Wagoner 22 Comparison: Current Results and Oh paper*, Fig. 14 B B C C A D Current results A D Oh paper* Fig. 14(c) Minor strain distribution Holding force = 300kN Drawing depth = 60 mm * K. Oh and et al., “Development of New Formability Test for Sheet Materials using Axiomatic Design”, submitted to J. Mater. Proc. Tech.. R. H. Wagoner 23 Comparison: Current Results and Oh paper*, Fig. 9 D D A A C C B To be compared with Fig. 9 (a)* Thickness distribution Holding force = 100kN Drawing depth = 30 mm B To be compared with Fig. 9 (a)* Thickness distribution Holding force = 300kN Drawing depth = 30 mm * K. Oh and et al., “Development of New Formability Test for Sheet Materials using Axiomatic Design”, submitted to J. Mater. Proc. Tech.. R. H. Wagoner 24 Comparison: Current Results and Oh paper*, Fig. 9 D A C B To be compared with Fig. 9 (c)* Thickness distribution Holding force = 500kN Drawing depth = 30 mm * K. Oh and et al., “Development of New Formability Test for Sheet Materials using Axiomatic Design”, submitted to J. Mater. Proc. Tech.. R. H. Wagoner 25 Note Need original Oh data* for Figure 9 and possibly other draw depths + variables for comparison with current results. * K. Oh and et al., “Development of New Formability Test for Sheet Materials using Axiomatic Design”, submitted to J. Mater. Proc. Tech.. R. H. Wagoner 26 Simulation of Stamping Process 350 CPU Time (hour) Holding force = 500kN 300 100kN 2.8 250 Punch Force (kN) Holding force = 300kN 300kN 2.7 200 500kN 2.6 150 Holding force = 100kN 100 50 Posco Stamping Process Simulation Material: BH340 0 0 20 40 60 Distance (mm) * K. Oh and et al., “Development of New Formability Test for Sheet Materials using Axiomatic Design”, submitted to J. Mater. Proc. Tech.. R. H. Wagoner 27 Conclusion • Tensile tests of Posco Mg AZ31B has been carried out, 150oC - 300oC, 10-1/s - 10-4/s. • A preliminary constitutive model reproduces measured tensile data with Reasonable accuracy (<> = 7 MPa) • Further refinement of constitutive model is needed to reproduce large-strain tensile response. • The Oh formability test has been implemented and tested using Abaqus (material: 340BH) • Additional data from Oh simulations are requested to make additional Verification. * K. Oh and et al., “Development of New Formability Test for Sheet Materials using Axiomatic Design”, submitted to J. Mater. Proc. Tech.. R. H. Wagoner 28