スライド 1

Download Report

Transcript スライド 1

Jet Finding Algorithmと
Jet Energy Calibration
の課題研究
田中 礼三郎 (岡山大学)
アトラス日本夏の学校@CERN
2003年8月22日
内容
1.
2.
3.
TevatronとLHC
Wボソン,トップクォークの質量測定
Jet Finding Algorithm
Cone, kT algorithm
4.
Jet Energy Correction
LEP, HERA, Tevatron, LHC
5.
纏め
1.TevatronとLHC
Tevatron collider in Run II

The Tevatron is a protonantiproton collider with 980
GeV/beam
s  1.96TeVin RunII(1.8TeVRunI)

36 p and p bunches 396 ns
between bunch crossing

Increased from 6x6 bunches
with 3.5ms in Run I

Increased instantaneous
luminosity:


Run II goal 30 x 1031 cm–2 s-1
Current: 3~4.5 x 1031 cm–2 s-1
Run II Data Taking Status



Lint~300 pb-1 delivered by the Tevatron
Good quality data since Spring 2002
Data collection efficiency 85~90%
Next Year projection:
additional 310~380pb-1
delivered
Tevatron Collaborations
12 countries, 62 institutions
767 physicist
19 countries
83 institutions, 664 physicists
The
CDFII Detector
RETAINED FROM CDF in RUN I
Solenoidal magnet (1.4 Tesla)
Central calorimeters
Central muon detectors
NEW FOR CDF in RUN II
Tracking system
 Silicon vertex detector (SVXII)
 Intermediate silicon layers (ISL)
 Central outer tracker (COT)
Scintillating tile end plug calorimeter
Intermediate muon detectors
Scintillator time of flight system
Front-end electronics (132 ns)
Trigger system (pipelined)
DAQ system
All detectors inside the solenoid are new
Others are from Run 1 with enhancements
wire drift chamber (96 layers) m
TOF System
2.0
A new scintillating tile plug
calorimeter covering
|η| out to 3.6.
END PLUG HADRON CALORIMETER
•
END WALL
HADRON
CAL.
SOLENOID
1.5
1.0
END PLUG EM CALORIMETER
A new 3d tracking
system and vertex detector
covering |η|out to 2.0.
n = 1.0
COT
.5
30
n = 2.0
n = 3.0
3
0
0
0
.5
1.0
Inner silicon
6 layers
1.5
2.0
2.5
3.0
Intermediate silicon
1 or 2 layers
0
m
D0
Silicon Microstrip
Tracker (SMT)
ATLAS (A Toroidal LHC ApparatuS)

Liq.Ar EM calorimeter
good e/g id, energy, ETmiss

muon spectrometer
air-core troidal magnet
Bdl = 2~6Tm (4~8Tm)

inner tracking system
pixel, silicon strip, TRT
2T solenoid magnet
good e/g id, t/b-tag
ATLAS detector
tracker
|h| < 2.5
calorimeter |h| < 4.9
CMS (Compact Muon Solenoid)



4T solenoid
Compact muon spectrometer
EM calorimeter PbWO4 for Hgg
ABC at hadron collider



We never know total longitudinal momentum in any event.
Total transverse momentum of all particles is zero.
transverse momentum
pT = |p| sinq
transverse energy
ET = E sinq
pseudo-rapidity
h = -ln tan(q/2)
missing transverse energy ETmiss = En
Distance in pseudorapidity-azimuthal angle space
(used in jet cone algorithm)

DR=(D h)2 +(D)2
Existence of minimum bias events.
LHC: inelastic, non-diffractive cross section: s70mb
 23 pile up/crossing@1034
Tevatron RUN-II:  6 pile-up/crossing (Poisson)
Troid +
2T solenoid
4T solenoid
Challenge for tracking
HZZ4m
Jet Energy Flow
Particle
type
g
e
m
Jet
Et
miss
Tracking
ECAL
HCAL
Muon
μのエネルギーロス
b-tag

Vertex detector

Soft lepton tagging
b-quarks have a long lifetime:
t(b) ~ 1.5ps (ct~450mm)
B-tagging using displaced vertices
identifies lepton in semi-leptonic
b(or c) decays
leptons are softer less isolated than
from W/Z decay.
CDF RUN2a: b = 60% , c = 25%, j = 0.2%
ATLAS: b = 60(50)% for low (high) lumi.
RUN2b: b = 70% , c = 10%, j = 0.02%
c = 10%, j = 1%
2.Wボソン,トップ
クォークの質量測定
MW measurement
W transverse mass
mTW  2 pTl pTn (1  cos D )
l 
n
pT   | pT  u |
major uncertainty source

E, p scale & resolution
use Ze+e-/m+m-, , J/, (2s)

Recoil modelling
ISR(QCD), spectator quarks,min. bias
exploit similar production mechanism
for W and Z

pTW
use of lepton pseudorapidity
distributions in W and Z decays

PDF (parton distribution)
estimate from Z data
MW measurement at RUN-I/LHC
Energy and momentum scale/resolution
Ze+e-, Zm+m-
, J/, (2s)
Recoil modelling
neutrino  PT imbalance
recoil from



ISR(QCD)
spectator quarks
additional minimum bias
Exploit similar production
mechanism for W and Z.
Parton distribution functions (PDF)
x-region of W production
asymmetry u(x)>d(x) 
W+(W-) boosted along p(p-bar)
use of W charge asymmetry data
to constrain PDF
such an asymmetry does not
exist at LHC(pp) !
use of lepton pseudorapidity
distributions in W and Z decays
 constraint PDF to few %
DMW < 10 MeV
W production model pTW
pTW is estimated from Z data
 d 2s 
 W 
2
2
 d s 
d s
 dpT dy 




dpTW dy  dpTZ dy  data  d 2s 
 Z 
 dpT dy theory
error DMW=20 MeV
 dominated by Z statistics
 theoretical error (5 MeV)
Top production cross section
top factory
s  2T eVs NLO  7 pb
s  14T eVs NLO  800pb


stot=70mb for LHC
109 interactions/sec@1034cm2s-1
Interesting physics
W production: ~2kHz
Top production: 10Hz
Higgs production: 0.1(0.01)Hz
for MH=100(500) GeV
s ( s)  
ij
1
 dx dx
0
1
^
^
f ( x1 ) f i ( x2 ) s ij ( s, mt )
2 i
PDF: fi(x1),fi(x2)
xi is momentum fraction of
parton i. ^
s  x1 x2 s

Tevatron
qq(90%), gg(10%) RUN-I
qq(85%), gg(15%) RUN-II

LHC
qq( 5%), gg(95%)
enhanced gluon structure
function.
LO
CDF実験 RUN1 トップクォーク質量
最大の系統誤差は,
Jet Energy Calibration
→LHCでも同じ。
Top, Higgs, SUSY…
PRD63(2001)032003
Double b-tagged
dilepton event @ CDF
69.7
First look at top mass in Run II
CDF RunII preliminary, 108 pb-1
CDF RunII preliminary, 126 pb-1
Data 22 evts
6 events
Mass in lepton+jets channel
with a b-tagged jet
2
177.512.7
(stat)

7.1(syst)
GeV/c
9.4
Mass in dilepton channel
2
175.017.4
(stat)

7.9(syst)
GeV/c
16.9
3.Jet Finding
Algorithm
Jet Finding
 Calorimeter
jet (cone)
jet is a collection of energy deposits with a
given cone R: R  Δ 2  Δη2
 cone direction maximizes the total ET of the jet
 various clustering algorithms

 correct for finite energy resolution
 subtract underlying event
 add out of cone energy
 Particle jet
a spread of particles running roughly in the
same direction as the parton after hadronization

Jet Algorithms
Fixed Cone (RunI)
kT (Ellis-Soper)
• Iterative
• Recombinant
• Fixed cone of radius R
• Distance parameter D
• Overlapping cones:
split/merge parameter
• Sensitivity to soft
radiation
• Infrared and collinear
safe in principle
kT Algorithm
d ij  min( PT2,i , PT2, j )
Ellis-Soper PRD48(1993) 3160
DRij2
D2
preclusters
KT jet
Cone jet
A cone jet is just the
highest-ET stable cone…
final jets
hep-ex/0005012
Jet Algorithms: kT
For each object and pair of objects:
dii  k 2T,i
order all dii and dij:
If dmin=dij
2
ΔR
ij
dij  min(k 2T,i ,k 2T, j ) 2
D
Soft
Collinear
 merge particles
(if DR<<1 )
Resolution
parameter
(D=1)
 theoretically favored, no split-merge
 to reduce computation time, start
with 0.2 x 0.2 pre-clusters
 x-section measurement differ from
cone-jet
If dmin=dii
 jet
(JETRAD)
DØ
Subjet multiplicity of gluon and quark jets reconstructed using the kT algorithm in pbarp collisions
Phys. Rev. D65 052008 (2002) hep-ex/0108054
The inclusive jet cross section in pbarp collisions at sqrt(s)=1.8 TeV using the kT algorithm
Phys. Lett. B {525}, 211 (2002) hep-ex/0109041
Inclusive Jet Cross Section


First analysis you do…count jets in pT bins
Central region has large cross section, well-controlled
systematic uncertainties
d 2s
N

 Csmear
dET dh   L  DpT  Dh
versus pT
Results for kT and cone
D0
Each distribution is
compared to its
own prediction
Uncertainties highlycorrelated from
one bin to the next
 normalization not well-determined, but shape is
Important deviation from cone and from predictions at low-pT
Jet Finding Algorithmの歴史

UA2: fixed size cones, R=1.3
± 30 % cross section uncertainty

TeVatron Run 1: cones R=0.7, merge/split
factor of 2 or more improvement in precision

End of Run 1: DØ looks at kT algorithm, similar
to ones used by HERA experiments

CDF/DØ attempt to improve both algorithms and
achieve consistency
4.Jet Energy
Correction
① LEP
Energy Flow
Total energy
in the Jets



ETOT=pe+ pm + pcharged hadron + Eg + Eneutral hadron
[ tracks only]
[calorimeter only]
to improve the energy flow
resolution, the neutral particle
id such as g(0), neutron, K0L is
most important,
this is achieved with fine
granular and hermetic
calorimeter design.
e/ ratio can be corrected to
unity with software correction
(i.e. don't need to construct
Scinti:Pb=1:4 calorimetre for
hardware compensation).
s Energy Flow  0.59 E (GeV )
(1.2 E (GeV )
if ETOT  EECAL  EHCAL )
E-flow algorithm
M-N. Minard
http://3w.hep.caltech.edu/calor02/
- Good track resolution
- Calorimeter segmentation is used
to identify differents contribution:
* Charged tracks & identified lepton
* g ( and 0)
* hadronic neutral
* Residual from g, charged hadron
Energy resolution from Z->qqg events
s(E)/E = (0.59+-0.03)/E + (0.6+-0.3) GeV
Expected resolution at high energy is derived
Jet reconstruction
Algorithm used Durham:
- E-flow object with
yij = 2 min(Ei2,Ej2)(1-cosqij)/Ecm2 < ycut
associated in the same jet
- WW-> q1q2q ’1q ’2 forced into 4 jets
Jet performances studied from Z data
- Energy response and resolution
d(Ejet)/Ejet = 0.67/Ejet
(10% at 45 GeV- perfect detector:6-7%)
- Angular resolution
0.9° with Eflow
charged track only : 1.6°, calorimeters : 1.4°
② HERA
H1/ZEUS Jet Algorithm
hep-ph/0211298
③ Tevatron
Jet Energy Correction

Relative correction
 検出器の相対的な補正

Absolute correction
 検出器の絶対的な補正

Underlying event subtraction
 ミニマムバイアス,マルチプル散乱

Out-of-cone addition
 コーン外側のエネルギー補正
Physics effects & Detector response
Phycics effects




Natural W width
Underlying event
fluctuation
Final State Radiation
(FSR)
Initial State gluon
Radiation (ISR)
"Halloween" Photon + Jet Event (seen October 24,1994)
This event has a 311 GeV photon opposite a 295 GeV jet.
The photon + jet mass is at least 0.76 TeV, not bad for a 1.8 TeV
pbar-p collision!
Energy Flowとγ+Jetによる補正
Jet Energy Scale
jet
g
 correct Jet Energy to the particle level
ptcl
E jet

E meas
jet  E offset
shower
R calo
R
jet
jet
 Eoffset energy offset from underlying event,
pile-up, noise
determined from Min. Bias Events
 Rcalo calorimeter response
using g-jet events: Missing ET
Projection Fraction Method
 Rshower energy contained in jet
corrections from MC - energy in
cones around the jet axis
 depending on jet algorithm!
Determination of the Absolute Jet Energy Scale in the D0
Calorimeters. NIM A424, 352 (1999), hep-ex/9805009
Run II: g+jet / Z+jet
g/Z+jet
QCD (udsg)
signal:152 M evts
bkgd: 47.1 M evts
signal: 64.8k evts
bkgd: 650 evts
QCD (cbt)
W+jet, Z+X,
nn
• g+jet: Run I method – jet calibration possible up to 250 GeV
• Z+jet: lower statistics, but clean sample, useful at low energies, x-check!
b-jet calibration
 naïve reconstruction
of Z-mass shows a
lower mass for selected
b-jets than light quark
jets.
 energy losses from
semi-leptonic b decays
(n, m)
 wider b-jets (due to
the large b-mass)
Z  bb
peak: 82.6
Z  qq
peak: 86.8
Z bb vs g + b-jet
g + b-jet :
Zbb:
 high statistics, allows for a tight b-jet selection (btagging).
 expected number of tagged events: 1.2 M
but: sensitive fractional imbalance I= (pT(g) - ET(jet))/ pT(g)
 systematics closer to physics processes (H or
Top) at high pT
 resonance mass independent of
multiple interactions.
 but: signal/noise~10-3 requires special trigger
(Silicon Track Trigger – operational end 2002)
CDF Run 1: Z bb Signal
 after cuts:
S/N=1/6 at the Z
mass peak
 select/antiselect
w.r.t. the 2
variables to
determine the
tagging probability
 3.2 s exces
④ LHC ATLAS
ATLAS実験
Jet / ET miss / Tau Combined Performance WG
Martine Bosman,Donatella Cavalli,Frank Paigeら。

Cone and KT jet algorithms がAthenaに入っている。

JetRec, TauRec, EmisRec and EflowRec in Athena。
H1の較正方法を採用している。
検出器のノイズやpile-upの効果の研究がなされている。
SUSYグループと協力。



Calibration Workshop at Ringberg Castle (Germany) 21-24th July
http://wwwatlas.mppmu.mpg.de/ringberg2002/
D.Cavalli et al., Athens 2003
ETmiss critical for invariant tt mass reconstruction :
Z/A/H   t1 t2  prod1 n1 prod2 n2

prod1(2) = jet , lept
Assumptions :
 mt = 0
 the two neutrino system directions are coincident with the ones
of the measured t-decay products ( u1, u2 )

t-decay products are not back to back
mtt =  2(E1+ En1 )(E2+ En2)(1 - cosq)

E1,E2 = t-decay products energies

q = angle between t-decay products directions

En1, En2 = energies of the two neutrino systems :
pxmiss (pymiss) = (En1  u1 ) x(y) + (En2  u2 ) x(y)

En1, En2 must be physical ( > 0 )
s (mtt)  s (ETmiss) / |sin (D) prod1 prod2 |
DC1 data : bbA tt , Z tt
No Noise added
D.Cavalli et al., Athens 2003
PHYS TDR
Noise added :
Ecell > 1.5 s(Noise)
Calibration :
different sets of
calibration constants
for hadronic cluster
cells, em cluster cells
and cells outside clusters
in different calorimeters
H1-Style calib in
GOOD agreement
with PHYS TDR !!
ETmiss Resolution = s ( Ex(y)miss Rec |h|< 5 - Ex(y)miss_NonInt )
SumET
= ET calo cells within |h|< 5
ETmiss Resolution = k   SumEt
5.纏め



LHCにおいても,Jet Energy Calibrationはとても重要。
Jet Finding algorithm – cone, kTなど。
実際のデータを用いて較正する。実験屋のアイデア次第。
 J/ΨやΥデータ,γ+Jets,W/Z+Jets,Z→bb

ATLAS測定器はfine granularである。
 Energy
Flowの研究をしてはどうか?
おわり