Rectilinear Motion
Download
Report
Transcript Rectilinear Motion
Summary: Three Coordinates (Tool)
Velocity
Reference
Frame
Acceleration
vy
vn
r
(n,t) coord
velocity meter
q
(r,q)
coord
vx x
at
ar
an
vx
x
y
r
Observer
Path
ay
aq
O
(x,y)
coord
r
Reference
Frame
vr
vq
x
Observer’s
measuring
tool
vt
Path
Observer
y
ax
vy y
ax x
ay y
vn 0
vt v
v2
at v
vr r
vq rq
an
ar r rq 2
aq 2rq 1 rq
Choice of Coordinates
Velocity
Reference
Frame
Acceleration
vy
vn
r
(n,t) coord
velocity meter
q
(r,q)
coord
vx x
at
ar
an
vx
x
y
r
Observer
Path
ay
aq
O
(x,y)
coord
r
Reference
Frame
vr
vq
x
Observer’s
measuring
tool
vt
Path
Observer
y
ax
vy y
ax x
ay y
vn 0
vt v
v2
at v
vr r
vq rq
an
ar r rq 2
aq 2rq 2 rq
Translating
Observer
“Translating-only Frame”
will be studied today
No!
Observer’s
Measuring tool
(x,y)
coord
Path
Observer B
(moving)
(n,t) coord
velocity meter
r
q
(r,q)
coord
Rotating
Two observers (moving and
not moving) see the particle
moving the same way?
Observer O
(non-moving)
Which observer sees
the “true” velocity?
A
both! It’s matter of viewpoint.
This particle
path, depends
on specific
observer’s
viewpoint
“relative” “absolute”
Two observers (rotating and non
rotating) see the particle moving
the same way?
Point: if O
understand B’s
motion, he can
describe the velocity
which B sees.
No!
Observer
(non-rotating)
“Rotating axis”
will be studied later.
“translating”
“rotating” 4
2/8 Relative Motion (Translating axises)
Sometimes it is convenient to describe motions of a particle “relative” to
a moving “reference frame” (reference observer B)
If motions of the reference axis is known, then “absolute motion” of the
particle can also be found.
A = a particle to be studied
Reference frame O
Reference frame B
A
rA
rB
rA / B
B
O
frame work O is considered
as fixed (non-moving)
B = a “(moving) observer”
Motions of A measured by the observer
at B is called the “relative motions of A
with respect to B”
Motions of A measured using framework
O is called the “absolute motions”
For most engineering problems, O attached
to the earth surface may be assumed “fixed”;
5
i.e. non-moving.
Relative position
Jˆ
ˆj
Y
If the observer at B use the x-y **
coordinate system to describe the
position vector of A we have
y
A
rA
rA / B
rB
O
x
iˆ
rA/ B xiˆ yˆj
B
X
where
Here we will consider only the case
where the x-y axis is not rotating
(translate only)
Iˆ
rA / B = position vector of A relative to B (or with respect to B),
iˆ and ˆj are the unit vectors along x and y axes
(x, y) is the coordinate of A measured in x-y frame
** other coordinates systems can be used; e.g. n-t.
6
Relative Motion (Translating Only)
ˆj
y
x-y frame is not rotating
(translate only)
A
Y
rA
rA / B
rB
x
O
B
X
iˆ 0
ˆj 0
iˆ
rA rB rA / B
xiˆ yjˆ
Note: Any 3 coords
can be applied to
Both 2 frames.
a A aB a A / B
Direction of frame’s
unit vectors do not
change
0
rA rB ( xiˆ yjˆ ) ( xiˆ yjˆ)
vA / B
Notation using when
B is a translating frame.
vA vB vA / B
rA rB xiˆ yjˆ ( xiˆ yjˆ )70
aA / B
Path
Understanding the equation
Translation-only Frame!
Observer B
A
O & B has a “relative” translation-only motion
vA vB vA / B
This particle
path, depends
on specific
observer’s
viewpoint
Observer O
reference
reference
framework O
vA / O
frame work B
vB / O
A
rA
rB
O
rA / B
B
Observer O
Observer O
Observer B
(translation-only
Relative velocity with O)
This is an equation of adding vectors8
of different viewpoint (world) !!!
The passenger aircraft B is flying with a linear motion to theeast with
velocity vB = 800 km/h. A jet is traveling south with velocity vA = 1200
km/h. What velocity does A appear to a passenger in B ?
vA B vA vB
Solution
vB 800
vA B
vA 1200
q
vA 1200 ˆj
y
vA B
800
tan q
2
1200
800
1200
vB 800 iˆ
v A B 800ˆi 1200ˆj
x
9
2
Translational-only relative velocity
vA
18 ˆ
i 5iˆ m / s
3.6
aA 3iˆ m / s2
vA B
aA B
vA B vA vB
aA B aA aB
q 2 3
1
rad/s
60 10
q 0
You can find v and a of B
10
v2
an rq
r
at rq 0
2
v
vA 5iˆ m / s
q
10
aA 3iˆ m / s2
q 0
rad/s
vA
2
B
v
9
a
B
vB rq
R
10
9
vB ( ) cos 45o i sin 45o j 2iˆ 2 ˆj
10
vA/ B vA vB 3iˆ 2 ˆj m / s
2
B
v
aB
cos 45o iˆ sin 45o ˆj 0.628iˆ 0.628 ˆj
R
aA/ B aA aB 3.628iˆ 0.628 ˆj m / s
y
vB
vA/B
x
Velocity Diagram
y
aB
aA
aA/B
x
Acceleration
Diagram 11
Is observer B a translating-only observer
B
relative with O
vA vB vA/ B
?
vB ? vA vB/ A
Yes
Yes
O
vA ? vB vA/ B
vB ? vA vB/ A
Yes
No
vB vA vrel:B / A
?r
To increase his speed, the water skier A cuts across the wake of the
tow boat B, which has velocity of 60 km/h. At the instant when
q = 30°, the actual path of the skier makes an angle = 50° with
the tow rope. For this position determine the velocity vA of the skier
and the value of q
v rq 10 q
Relative Motion:
AB
(Cicular Motion)
20
vA B : atobserber
Consider
point A and B,
B
as r-q coordinate system
50
vA vB vA B
M
?
?
Point: Most 2 unknowns can
be solved with
1 vector (2D) equation.
A
q 30
16.67
sin 40
60
O.K.
10 m
vB / A : obserber A,
translating?
B
20
60
30
30
D
translating?
vA B
40
60
vA
vA
vA
sin 120
22.5 m s
v A B 16.67
120
20
vB
60
16.67 m s
3.6
sin 20
10q
sin 40
q 0.88713rad s
2/206 A skydriver B has reached a terminal
vB 50 m / s
speed vB 50 m/s . The airplane has the constant speed
vA 50 m/s and is just beginning to follow the circular path v 50 ˆj
B
shown of curvature radius = 2000 m
aB 0
Determine
(a) the vel. and acc. of the airplane relative to skydriver.
(b) the time rate of change of the speed v r of the
vA 50iˆ
airplane and the radius of curvature r of its path, both
aA 0
observed by the nonrotating skydriver.
aA x 0 (aA )t
a A y (a A )n
v A2
A
a A (a y ) ˆj 1.250 ˆj m / s 2
vA / B = vA - vB , aA / B aA - aB
rB / A ,qB / A
vA/ B 50iˆ 50 ˆj
aA / B 1.250 ˆj
14
(b) the time rate of change of the speed v r of the
airplane and the radius of curvature r of its path,
both observed by the nonrotating skydriver.
vB 50 ˆj
aB 0
vA 50iˆ
aA 1.250 ˆj m / s2
vA / B , aA / B
t
aA / B
n
v r r
n t coord
45o
vA/ B
45o
vA/ B 50iˆ 50 ˆj
aA / B 1.250 ˆj
vr (aA/ B )t aA/ B sin 45o
vA2 / B
r
(aA/ B )n aA/ B cos 45o
15
vA
1000 ˆ
i m/s
3.6
aA 1.2iˆ m / s2
1500 ˆ
vB
i m/s
3.6
aB 0 m / s2
r ,q : relative world
rB / A ,qB / A
r q
coord
vB / A , aB / A
16
vA
1000 ˆ
i m/s
3.6
aA 1.2iˆ m / s2
30o
vB
q
r
v
a
vB / A
500 ˆ
i
3.6
q
r q coord
r
( vB / A ) r r
v cos q
(vB / A )q rq
v sin q
(aB / A )r r rq 2
(aB / A )q rq 2rq
aB / A 1.2iˆ
a cos q
a sin q
1500 ˆ
i m/s
3.6
aB 0 m / s2
1800 1200
1200
sin 30o
r v cos q 120.3
q 0.00579
r 0.637
q 0.166 103
17