Transcript Slide 1
To find the trig values of any acute angle we rotate a point about a circle as shown below: Now we redefine the the trig functions as y x y follows: sin , cos , tan , r r x r r x csc , sec , cot y x y Since both x and y are positive in the first quadrant, all the trig function values are in first quadrant. What happens if the point is in the second quadrant? Third quadrant? Fourth quadrant? Consider a point on the x, y circle in quadrant II y sin (positive) r x cos (negative) r r y x (neg) y tan (negative) x Only sine (& csc) are positive, all other trig values negative. Consider a point on the circle in quadrant III. y sin (neg) r x cos (neg) r y tan (pos) x x (neg) y (neg) r Only tangent & cotangent positive in Q III, all other trig values are negative! Consider a point on the circle in quadrant IV. y sin (neg) r x cos = (pos) r y tan (neg) x x (pos) r Only cosine & secant positive in Q IV, all other trig values are negative! y (neg) So, if we know what quadrant the terminal side lies in, we can tell what the sign or of the trig function is: sine & cosecant All tan & cot cos & sec Q I All are positive Q II only sin (&csc) Q III only tan (& cot) Q IV only cos (& sec) We can use the " All Studs Take Calculus" to quickly determine the sign of a trig function! Only sin & csc in Q II S A T C Only tan & cot in Q III All in Q I Only cos & sec in Q IV Find the exact trig function value of: cos 2250. First sketch the angle: This forms a right triangle in quadrant III, a 450 450 900 whose sides are: 1,1, 2. x 1 2 So cos 225 r 2 2 0 1 2 or cos 225 cos 45 2 2 0 0 0 Note: 45 is called the reference angle. Find the exact trig function value of: cot 2400 . r 2 First sketch the angle: y 3 reference angle 600 , this forms a 300 600 900 triangle whose sides are: x 1 1, 2 , 3 x 1 3 So cot 240 y 3 3 0 1 3 or cos 240 cot 60 3 3 0 0 Find the exact trig function value of: sec 750 First sketch the angle: 0 sec 7500 sec 300 sec 3300 reference angle 300 , this forms a 300 600 900 triangle whose sides are: x 3 , r 2 , y 1 r 2 2 3 sec 750 sec 330 sec 30 x 3 3 0 0 0