Transcript Slide 1

SUSY studies at the TESLA  collider
H. Nieto-Chaupis & G. Klämke
(In collaboration with K. Mönig, H. Nowak, and A. Stahl. )
DESY-Zeuthen
LCWS - Durham, UK Sep 01 - 04 2004
At this talk :
 The TESLA photon collider (very brief descriptio n).
 The SPS1a scenario and some available BRs.
 Sleptons : analysis and precision studies.
 ~  studies at alternativ e scenario.
1
 Summary and future directions .
 TheTESLA photon collider
Simulation achieved by V. Telnov
Laser
e
 c  56 mrad
-
ee-
e-
2 ,1 mm
Simulation achieved by G. Klemz
(Up to 5  are considered )
The photon collider will be an interestin g window
8
to explore Higgs and SUSY (complemen tary to LC).
Slepton sector : high cross sections (t channel only)
6
Polarization is assumed (Pe -  80%) and J  0.
dL/dW [10
32
-1
-2
-1
eV cm s ]
10
4
Simulation with Pile - Up events : mandatory.
2
Emax 
0
0
100
200
300
photon energy [GeV]
400
500
x
Ee 
x 1
x
4Ee 
me-
Ee  250 GeV;  1.17 eV; x  4.5  Emax  0.82 Ee
 The SPS1a scenario and some available BRs.
Gravity - mediated SUSY - breaking : mSUGRA  only 5 free parameters . The SPS1a scenario :

m1/2  250 GeV, m0  100 GeV, A0  100 GeV, tan   10 GeV, and sign(  )  1
~
~
lR
lL


~ ~
lR lR
100%
~
lR
~10l 
~10l 
~ ~
lL lL ~50%

~
lL
~10l 
~10l 
Right slepton : huge background(ee- E or    E ) Left Slepton : cascadedecays from ~20 .
~
~

L
L
~ 

0
1
(e.g.):

~0 

1
~0 

2
~ 

1

54.9633
~0  
~0 

1
1
16.8814
28.1553
~0  
~0 

1
2
~0  
~ 

1
1

15.4750
54.9633
~0 

30.2096
~0  
~0 

16~.8814
 
~  
~0 

1

1
~  
~0 

1

2
~  
~ 

1

1

28.1553
15.4750
4.7530
7.9272
2
1

2
1
9.2785
9.2785
~  
~ 

0
2

0
2
2.8498

~0  
~ 

2
1
4.7530

L   ( se -e-  600 GeV /500 GeV)
L  1000 fb /year


29.09 fb / 88.16 fb
~

R

29.09 fb/88.16 fb

36.27 fb

~


~1
~

L



~ 
~1
0.34 fb
~2



~2
~

1

170.82 fb
~

1
~0

1
 


~2
~1
~

1
4.31 fb
~1
~0

1
1


 ~ 0
1


~ 0

1
   
 ~  ~ 
L
L
 ~ ~
~
~



1
1
1


  W W  (2)
 W W  (3)
  W W  (2)
 W W  (3)
1
 ~1~1
 ~ ~ 
2
   
 ~  ~ 
1
    
e





 ~2~2
~
~

    
e
 
1
~ 
e

~0

1



    


~2
33.50 fb


~0

1
 W W  (3)
 ~2~2  W W  (2)
~
~   W W  (3)

1
1

~0

~1
1
 W W  (2)
  ~1~1  W W  (1)      
~0

1
~

0.83 fb
1


1

L
26.82 fb

 ~2~2
~
~

1


L

~

R
10.96 fb
~

L
1

~0

1

~

  ~1~1   W W  (1)      
~0

~

R
R

Background
Main mode
-1
2
  W W  (2)
 W W  (3)
R
R
 Sleptons : analysis and precision studies.
 Sleptons : ~R analysis
SHERPA
SIMDET
Analysis achieved at se -e -  500 GeV
Masses : kinematica lly accesible.
L  113 fb -1   88 fb
Signal
Cuts :
 15 GeV  E  105
 Accop  3.05 Rad
 Accoli  3.00 Rad
Background
 Visible energy  150 GeV

 Full p     100 GeV.
 Invariant Mass  150 GeV
Eff  87.45% Pur  75.97%
Stat. Error  1.15%
~R identifica tion  good accuracy !
 Sleptons : ~L analysis
se  e -  600 GeV, L  250 fb -1
 collider
e  e  LC
SHERPA
PYTHIA
SIMDET + PILE-UP
 Left smuon present rich physics to difference
to e  e - collider (flat spectrum).
 Due to ~20 and ~1 couplings, pronunced peaks
could be observed at the lepton spectrum.
 Peaks could tells us something about kinematics .
 Pions and photons are low energetics : analysis
  
ee
  
n
become difficult with pile - up events.
 Photons FS plays important role at low energy.
 ~L    ~10
 Muon are highly energetics with high missing energy.
 Main background : W W - and ~  ~  : smeared missing mass.
R
R
 Eff  0.400, Pur  0.398, Br  0.5498  0.01398 (B  NSel .Pur/L. .Eff).
 Assumption : L  5% and   1%. Statistica l error  2.038%
    -    - final state analysis.
 Muon tagging : at least 1 must be inside ~L    ~10 region. E tipycally  50 GeV.
 At least 1  comming from cascade decay with very low energy ( 30 GeV)
 Main background : Jets (but fortunatel y it have low invariant mass)
 Cut imposed on invariant mass  sharp peak at E4   8 GeV. BR  0.04798  0.0023(4.86% St.)
 Sleptons : ~1 analysis
SHERPA (4 particles FS)
 Scalar tau presents an important background ,
mainly from    and charginos.
 428 GeV  Missing Energy  592 GeV
 Missing Mass  498 GeV  predominan ce of
Invariant Mass between 4 GeV and 40 GeV.
 Pur  11.2 %, Eff  77.6% and Stat. Error  7.22%
Chargino studies (G. Klämke)
 Goal : Direct measuremen t of Chargino branching ratio.
 Process :   ~  ~   W  ~ 0W  ~ 0
1
1
1
1
 mSUGRA parameters : m0  130 GeV, m1/2  250 GeV, A0  -100 GeV,
tan   9, and sign   1
 Masses and BRs : m( ~1 )  180 GeV, m( ~10 )  95 GeV, m(~1 )  159 GeV,
BR(~   W  ~ 0 )  26.2%, BR(~   ~  )  72.5%
1
1
1
1

 Analysis done for e - beam energy  250 GeV and 300 GeV.
Signal
Cross Sections ( calculated with SHERPA)
 (250 GeV)  2.62 fb
 (300 GeV)  7.98 fb
Signal events per 1000 fb-1 (1 year)
N(250 GeV)  2620
N(300 GeV)  7980
Background (  4 jets)
Cross Sections
 (250 GeV)  13.7 pb
 (300 GeV)  13.4 pb
Signal events per 1000 fb-1
N(250 GeV)  13.7  10 6
N(300 GeV)  13.4  10 6
Pile - Up events
 Low energy hadrons, induced by Beamstrahl ung & Compton photons.
 1.8 events per BX (average).
 Reduced by cuts on polar angle and
vertex of hadron tracks.
Some cut - variables
Acoplanarity
Background
(250 GeV)
Signal
(250 GeV)
PT Missing
W - Energy
After cuts (250/300 GeV) : Nsignal  529/1919 , Nbackg  6951/46206,
Eff  20.2/24.1% , Pur  7.07/3.99 %
N
(1000 fb -1 )  16.3/11.4%
N
 BR(~1  W  ~10 )  8.2% (250 GeV)
5.7% (300 GeV)
Fittino: general fit of MSSM parameters by using the
LC observables (e.g. cross-sections & masses).
Some MSSM parameters are fitted with FITTINO (others fixed):
Parameter
Input Value
Fit-Error
without BR
Fit-Error
with BR (5.7%)
tan 
9.0
6.29%
4.69%
M1
99.54
0.092%
0.073%
M2
192.57
0.140%
0.083%
 the measurement of BR(~1  W  ~10 ) can improve
the error of the fitted MSSMparameters!
 Summary and future directions
 At this analysis we have assessed the capability of the TESLA
photon collider at the low energy SUSY sector.
 The pile - up events put down efficienci es ( increase the error at
low energy region  1 GeV).
 Definiteve ly the slepton sector present interestin g characteri stics.
 Left sleptons contain rich physics but it have also irreductib le Bg.
 Stau studies : tau finder could enhance the purity (in progress).
 Chargino studies : to study stau channel.
We are interested at particles with observables available at the photon collider (500 - 800 energies)
at SPS1a scenario(m SUGRA if SUSY low energy exist! )
~R (143.05 GeV) 0.2185 GeV ~1 (134.44 GeV)
~L (204.69 GeV) 0.2382 GeV ~2 (207.68 GeV)
~1 (181.65 GeV) 0.0138 GeV ~2 (375.27 GeV)
~ 0 ( 95.48 GeV)
0. GeV
~ 0 (181.65 GeV)
1
2
0.1571 GeV
0.2820 GeV
2.5540 GeV
0.0187 GeV
The Cross Sections are calculated from SHERPA program and SUSY spectrum is obtained from the
ISAJET(7.69) and SUSY decays are calculated from PYTHIA(6.3)
Outline
●The smuon left decay into SPS1a scenario.
●A brief approach to the TESLA photon collider.
●Iterative measurements.
●Synopsis.
● The
smuon left decays into SPS1a scenario.
ISAJET 7.69 is used to generate the spectrum of masses, widths and BRs.
~0
Prefered mode: ~10   ~10   (~30.20%) . Other modes containing have 
2
high multiplicity final state (cascade decays from tau lepton).
Charguino does decay substantially into staus.
~ 0 LSP candidate, m=95.5
Assumption: universal BR right sleptons = 1 ( 
1
~L ~L
~10  
~1 
~20  
~10  
54.9633
~ 0   ~ 0  
16.8814
~ 0   ~ 0  
28.1553
~ 0   ~ 
54.9633
~ 0  
30.2096
~ 0   ~ 0  
9.2785
~ 0   ~ 0  
15.4750
~ 0   ~ 

16.8814
~ 
9.2785
~  ~ 0  
2.8498

~  ~ 0  
4.7530
~  ~ 

28.1553
15.4750
4.7530
2
1

1
1
2
1
1

1
1
2
2
1
2

2
1
1
2
1
1

1
7.9272
)
GeV





~L
~10
~1
~1
Slepton prefers a Wino

 /e


l

~10
~
lR
l


→ cascade
10
Charguino can decay into W and staus.

~20
1  20
Slepton only decays to a Bino

~L
Slepton decays come from the coupling
 20
have more complicate decays.
Cascade decays could be observed if we have
high efficiency.
Up to 4 muons FS could be observed
SUSY also give us important background
Available final states
Final State
  ~ 0
1
  ~10e  e 
  ~10    
  ~10
  ~10
  ~10 
  ~10 
  ~10e 
  ~10e e 
  ~10e  
  ~ 0e 
1
 ~10 
  ~ 0 e 

1
 ~10  
  ~ 0  

1
Br
Final State
Br
0.549633
0.011073
0.011084
0.004393
  ~10 v 
  ~10 ve
0.006308
0.004512
0.002861
0.006308
  ~10 v 
  ~10 v 
~10
~10e 
~ 0 
0.009058
0.044289
~ 0 
0.063590
~10 
0.002849
0.002809
1
0.004512
0.004649
0.002938
0.006479
0.002861
0.002938
0.001862
0.004107
0.006479
0.004107
1
~10e 
~ 0
1
0.045487
0.028837
0.000495
~10e 
0.000509
~10 
~ 0 
0.000322
1
0.000711
●A
Laser Beam
brief approach to the TESLA photon collider
Conceptual Scheme of a
Gamma-Gamma Collider.
Electron Beam
CP
IP
Lγγ
Electron Beam
J=0, ECM =500 GeV
CP
Laser Beam
Additional effects also take place here!!
Emax 
x
Ee 
x 1
x
4Ee 
Non-linear effects
2
2 2 2
2
n
r
e
F

 e 
2
  2 2 2 
m c 0

me-
√sγγ
Ee  250 GeV;  1.17 eV; x  4.5  Emax  0.82 Ee
e


e
