Transcript Document
Arenes: compounds containing both aliphatic and aromatic parts. Alkylbenzenes Alkenylbenzenes Alkynylbenzenes Etc. Emphasis on the effect that one part has on the chemistry of the other half. Reactivity & orientation Example: ethylbenzene EAS in the aromatic part -CH2CH3 activates and directs ortho- & paraCH3 CH2 CH3 CH2 CH3 CH2 Br Br2, Fe + Br Free radical halogenation in the side chain -C6H5 activates and directs benzyl Br2, heat CH2 CH3 CH CH3 Br + HBr Alkylbenzenes, nomenclature: Special names CH3 CH3 CH3 CH3 CH3 CH3 CH3 toluene o-xylene m-xylene p-xylene others named as “alkylbenzenes”: H3C CH CH3 isopropylbenzene CH3 H2C CH2 H2 CH3 C CH CH3 n-propylbenzene isobutylbenzene CH2 CH3 CH2 CH3 o-diethylbenzene n-butylbenzene Use of phenyl C6H5- = “phenyl” CH2CH2 2-methyl-3-phenylheptane 1,2-diphenylethane do not confuse phenyl (C6H5-) with benzyl (C6H5CH2-) Alkenylbenzenes, nomenclature: Special name CH=CH2 styrene Rest are named as substituted alkenes CH2CH=CH2 3-phenylpropene (allylbenzene) (Z)-1-phenyl-1-butene Alkynylbenzenes, nomenclature: C CH phenylacetylene phenylethyne 5-phenyl-2-hexyne Alcohols, etc., nomenclature: H3C CH OH CH2OH 1-phenylethanol benzyl alcohol phenylethyl alcohol CH2CH2-Cl 1-chloro-2-phenylethane cyclohexylbenzene -phenylethyl chloride phenylcyclohexane Alkylbenzenes, syntheses: 1. Friedel-Crafts alkylation 2. Modification of a side chain: a) addition of hydrogen to an alkene b) reduction of an alkylhalide i) hydrolysis of Grignard reagent ii) active metal and acid c) Corey-House synthesis Modification of side chain: + H2, Ni Br + Sn, HCl ethylbenzene Br + Mg; then H2o Friedel-Crafts: Ar-H + R-X, AlCl3 Ar-R + HX Ar-H + R-OH, H+ Ar-R + H2O Ar-H + alkene, H+ Ar-R + CH2=CHCH3, CH3 CH CH3 H+ + CH3CH2-OH, H+ CH2 CH3 isopropylbenzene ethylbenzene CH3 CH3 + CH3 H3C C CH3 Br AlCl3 p-tert-butyltoluene H3C C CH3 CH3 H+ H3C cyclohexylbenzene CH2Cl AlCl3 CH2 CH3 ortho- p-benzyltoluene 2 CH2Cl2, AlCl3 CH2 diphenylmethane Friedel-Crafts limitations: a) Polyalkylation b) Possible rearrangement c) R-X cannot be Ar-X d) NR when the benzene ring is less reactive than bromobenzene e) NR with -NH2, -NHR, -NR2 groups polyalkylation CH3 CH3Br, AlCl3 CH3 CH3 + CH3 CH3 CH3 + + H3C CH3 The alkyl group activates the ring making the products more reactive that the reactants leading to polyalkylation. Use of excess aromatic compound minimizes polyalkylation in the lab. The electrophile in Friedel Crafts alkylation is a carbocation: R-X + AlX3 R+ R-OH + H+ R+ | | — C = C — + H+ R+ Carbocations can rearrange! rearrangement H3C + CH CH3 CH3CH2CH2-Br, AlCl3 isopropylbenzene CH3 H3C C CH3 + + CH3 CH3CHCH2-Br CH3 CH3CCH2-OH CH3 AlCl3 tert-butylbenzene H+ carbocation rearrangements are possible! CH3 CH3CCH2CH3 2-methyl-2-phenylbutane n-alkylbenzenes cannot be made by Friedel-Crafts alkylation due to carbocation rearrangements R-X cannot be Ar-X R + R-X, AlCl3 X AlCl3 + NR The Ar-X bond is strong and does not break like the R-X bond! NR with rings less reactive than bromobenzene Br Br Br CH2CH3 + + CH3CH2-Br, AlCl3 CH2CH3 COOH + CH3-Br, AlCl3 NR -CHO, -COR -SO3H -COOH, -COOR -CN NO2 + CH3CH2-OH, H+ NR -NR3+ -NO2 NR with –NH2, -NHR, -NR2 NH2 + NH2 AlCl3 NH2 + Lewis base NR CH3CH2-Cl, AlCl3 AlCl3 Lewis acid deactivated to EAS Friedel-Crafts limitations: a) Polyalkylation b) Possible rearrangement c) R-X cannot be Ar-X d) NR when the benzene ring is less reactive than bromobenzene e) NR with -NH2, -NHR, -NR2 groups In syntheses it is often best to do Friedel-Crafts alkylation in the first step! Alkylbenzenes, reactions: 1. Reduction 2. Oxidation 3. EAS a) nitration b) sulfonation c) halogenation d) Friedel-Crafts alkylation 4. Side chain free radical halogenation Alkylbenezenes, reduction: H2 C CH3CH3 H2, Ni NR NR H2 C H2, Ni 300oC, 100 atm. NR NR CH3 CH3 Alkylbenezenes, oxidation: H2 C CH3CH3 KMnO4 NR NR KMnO4 heat CH3 NR COOH NR NR COOH + KMnO4, heat COOH COOH + KMnO4, heat + 2 CO2 Oxidation of alkylbenzenes. 1) Syn H2C CH3 COOH 2) identification bp 136oC mp 122oC C8H10: CH3 CH3 bp 144oC CH3 COOH COOH mp 231oC COOH mp 348oC bp 139oC CH3 COOH CH3 COOH bp 138oC mp 300oC CH3 COOH Alkylbenzenes, EAS CH2CH3 HNO3, H2SO4 CH2CH3 NO2 CH2CH3 + NO2 -R is electron releasing. Activates to EAS and directs ortho/para H2SO4, SO3 CH2CH3 SO3H CH2CH3 + SO3H Br2, Fe CH2CH3 Br CH2CH3 + Br CH3Cl, AlCl3 CH2CH3 CH3 CH2CH3 + CH3 Alkylbenzenes, free radical halogenation in side chain: benzyl free radical CH2CH3 + Cl2, heat CHCH3 Cl 91% CH2CH3 + only CH2CH2-Cl 9% CHCH3 Br Br2, heat + X2 2X . CH2CH3 + X . .CHCH3 . . CHCH3 CHCH3 benzyl free radical > 3o > 2o > 1o > CH3 . CHCH3 Alkenylbenzenes, syntheses: 1. Modification of side chain: a) dehydrohalogenation of alkyl halide b) dehydration of alcohol c) dehalogenation of vicinal dihalide d) reduction of alkyne (2. Friedel-Crafts alkylation) Alkenylbenzenes, synthesis modification of side chain KOH(alc) CHCH3 Br H+, CH=CH2 heat CHCH3 OH styrene Zn CHCH2 Cl Cl H2, Pd-C C CH Alkenylbenzenes, synthesis Friedel-Crafts alkylation not normally used for alkenylbenzenes. + CH2=CH-Br, AlCl3 NR an exception: + CH2=CHCH2-Br, AlCl3 CH2CH=CH2 allylbenzene KOH(alc) conjugated with the ring Br + KOH, heat Alkenylbenzenes, reactions: 1. Reduction 2. Oxidation 3. EAS 4. Side chain a) add’n of H2 j) oxymercuration b) add’n of X2 k) hydroboration c) add’n of HX l) addition of free rad. d) add’n of H2SO4 m) add’n of carbenes e) add’n of H2O n) epoxidation f) add’n of X2 & H2O o) hydroxylation g) dimerization p) allylic halogenation h) alkylation q) ozonolysis i) dimerization r) vigorous oxidation Alkenylbenzenes, reactions: reduction CH=CH2 + CH=CH2 + H2, Ni CH2CH3 o H2, Ni, 250 C, 1,500 psi CH2CH3 H Alkenylbenzenes, reactions oxidation CH=CH2 KMnO4 CHCH2 OHOH KMnO4 CH=CH2 COOH + CO2 CH=O + O=CH2 heat 1. O3 CH=CH2 2. Zn, H2O Alkenylbenzenes, reactions EAS? electrophilic addition CH=CH2 electrophilic aromatic substitution alkenes are more reactive with electrophiles than aromatic rings! CH=CH2 + Br2, Fe CHCH2 Br Br In syntheses of alkenylbenzenes, the carbon-carbon double bond must be synthesized after any EAS reactions CH2CH3 CH2=CH2 CH2CH3 Cl2, Fe + ortho HF Cl Cl2, hv CH=CH2 Cl CHCH3 CH2CH2-Cl Cl Cl KOH(alc) Cl p-chlorostyrene Alkenylbenzenes, reactions side chain: H2, Ni CH2CH2CH3 CH=CHCH3 Br2, CCl4 Br CHCHCH3 Br HBr CHCH2CH3 Br H2SO4 CHCH2CH3 OSO3H Benzyl carbocation CH=CHCH3 CHCH2CH3 + H+ CHCH2CH3 CHCH2CH3 resonance stabilization of benzyl carbocation > 3o > 2o > 1o CHCH2CH3 CH=CHCH3 H2O, H+ CHCH2CH3 OH Br2, H2O Br CHCHCH3 OH 1. H2O, Hg(OAc)2 2. NaBH4 CHCH2CH3 OH 1. (BH3)2 2. H2O2, NaOH CH2CHCH3 OH HBr, perox. CH=CHCH3 CH2CHCH3 Br polymer. CHCH2 CH=CH2 n polystyrene CH2N2, hv CH=CHCH3 PBA CH=CHCH3 O CH=CHCH3 H C C H CH3 + CH=CHCH2-Br Br2, heat KMnO4 CH3 H OH HO H + CH3 HO H H OH (E)-1-phenylpropene 100 syn-oxidation; make a model! Alkynylbenzenes, syntheses: Dehydrohalogenation of vicinal dihalides Br2 CH=CH2 Br CHCH2 Br 1. KOH C CH 2. NaNH2 KOH(alc) H C CH3 Br H2 C CH3 CH2=CH2 HF Alkynylbenzenes, reactions: 1. Reduction 2. Oxidation 3. EAS 4. Side chain a) reduction e) as acids b) add’n of X2 f) with Ag+ c) add’n of HX g) oxidation d) add’n of H2O, H+ Alkynylbenzenes, reactions: reduction C C CH3 C C CH3 + 2 H2, Ni + (xs) H2, Ni heat & pressure + Li, NH3 + H2, Pd-C CH2CH2CH3 anti- syn- Alkynylbenzenes, reactions: oxidation O3; then Zn, H2O KMnO4 COOH C C CH3 KMnO4, heat + HOOCCH3 Alkynylbenzenes, reactions EAS? electrophilic addition C CH electrophilic aromatic substitution alkynes are more reactive with electrophiles than aromatic rings! C CH + Br2, Fe Br C=CH Br Alkynylbenzenes, reactions: side chain: Br2 Br C=CH Br 2 Br2 Br Br C C H Br Br C C H HBr C=CH2 Br 2 HBr Br CCH3 Br H2O, H+ C CH O CCH3 Na C C-Na+ C CH Ag+ C C-Ag+ C CH Ag+ C CCH3 NR, not terminal Arenes: alkylbenzenes alkenylbenzenes alkynylbenzenes As expected, but remember that you cannot do EAS on alkenyl- or alkynylbenzenes.