Transcript Slide 1
Study of Harmonic oscillator eigenstates H p 2 x 2 2 2 (all parameters = 1) Since p 1 i x consider a local “coarse grained” momentum: p ave x x x xx dx and compare with classical result p 2E x 2 Study of Harmonic oscillator eigenstates H p 2 x 2 2 2 (all parameters = 1) Since p 1 i x consider a local “coarse grained” momentum: p ave x x x xx dx and compare with classical result Note: the actual coarse graining shown in the next slides is a very rough numerical approximation to the equation shown here p 2E x 2 55th harmonic oscillator eigenstate 140 2 p ave x2 |d/dx| 2E-x2 (classical) V 120 100 E 80 60 40 20 0 -10 -5 0 x 5 10 45th harmonic oscillator eigenstate 100 2 p ave x2 |d/dx| 90 2E-x2 (classical) V 80 70 E 60 50 40 30 20 10 0 -10 -5 0 x 5 10 35th harmonic oscillator eigenstate 100 2 p ave x2 |d/dx| 90 2E-x2 (classical) V 80 70 E 60 50 40 30 20 10 0 -10 -5 0 x 5 10 25th harmonic oscillator eigenstate 70 2 p ave x2 |d/dx| 2E-x2 (classical) V 60 50 E 40 30 20 10 0 -10 -5 0 x 5 10 15th harmonic oscillator eigenstate 45 2 p ave x2 |d/dx| 40 2E-x2 (classical) V 35 30 E 25 20 15 10 5 0 -6 -4 -2 0 x 2 4 6 5th harmonic oscillator eigenstate 14 2 p ave x2 |d/dx| 2E-x2 (classical) V 12 10 E 8 6 4 2 0 -4 -3 -2 -1 0 x 1 2 3 4 0th harmonic oscillator eigenstate 3.5 2 p ave x2 |d/dx| 2E-x2 (classical) V 3 2.5 Rough numerical coarse graining scheme breaking the symmetry here! E 2 1.5 1 0.5 0 -1 -0.5 0 x 0.5 1