Molten Salt Processes
Download
Report
Transcript Molten Salt Processes
Molten Salt Processes and Room
Temperature Ionic Liquids
• Inorganic phase solvent
High temperature needed to form liquid phase
Different inorganic salts can be used as solvents
• Separations based on precipitation
Reduction to metal state
Precipitation
• Two types of processes in nuclear technology
Fluoride salt fluid
Chloride eutectic
Limited radiation effects
9-1
Reduction by Li
Molten Salt Reactor
• Fluoride salt
BeF2, 7LiF, ThF4, UF4 used as working fluid
thorium blanket
fuel
reactor coolant
reprocessing solvent
233Pa extracted from salt by liquid Bi through Li
based reduction
Removal of fission products by high 7Li
concentration
9-2
U removal by addition of HF or F2
Pyroprocesses
• Electrorefining
• Reduction of metal ions to metallic state
• Differences in free energy between metal ions and
salt
• Avoids problems associated with aqueous chemistry
Hydrolysis and chemical instability
• Thermodynamic data at hand or easy to obtain
• Sequential oxidation/reduction
Cations transported through salt and deposited
on cathode
Deposition of ions depends upon redox potential
9-3
Electrochemical Separations
• Selection of redox potential allows separations
Can use variety of electrodes for separation
• Developed for IFR and proposed for ATW
Dissolution of fuel and deposition of U onto cathode
High temperature, thermodynamic dominate
Cs and Sr remain in salt, separated later
• Free energies
noble metals
iron to zirconium
actinides and rare earths
Group 1 and 2
• Solubility of chlorides in cadmium
9-4
9-5
9-6
9-7
Electrolyte Salt and CdCl2 Oxidant
9-8
Electrorefining
Electrorefining
9-9
Electrorefining
9-10
Spent Fuel Decladding: Feed Material
•
•
•
•
•
Step 1
Support hardware remove from assembly
Pins chopped
Existing methods
Oxide fuel separated from cladding
Oxide fuel sent to reduction process
Cladding use as Zr source for ATW fuel
Offgas released in decladding collected and sent
to storage/disposal
9-11
Reduction of oxide fuel
Step 2
Input
• 445 kg oxide (from step 1)
• 135 kg Ca
• 1870 kg CaCl2
Output
• 398 kg heavy metal (to step 3)
• To step 8
Metal
2 kg Cs, Sr, Ba
189 kg CaO
Operating Conditions
1870 kg CaCl2
T= 1125 K, 8 hours
• 1 kg Xe, Kr to offgas
4 100 kg/1 PWR assembly9-12
Uranium Separation
Step 3
Input
398 kg heavy metal (from step 2)
• 385 kg U, 20 kg U3+(enriched, 6%)
• 3.98 kg TRU, 3.98 kg RE
• 188 kg NaCl-KCl
Output
• 392 kg U on cathode
• To step 4 (anode)
15 g TRU, 14 g RE, 2.8 kg U, 5 kg Noble
Metal
Anode
• Molten Salt to step 5
10 kg U, 3.9 kg TRU,
Operating Conditions
3.9 kg RE, 188 kg NaCl-KCl
9-13 hours
T= 1000 K, I= 500 A, 265
4 100 kg/1 PWR assembly
Polishing Reduces TRU Discharge
Step 4
Input from Anode #3
• 5 kg Noble Metal, 2.8 kg U, 15 g TRU, 14
g RE, 1.1 kg U3+, 18.8 kg NaCl-KCl
Output
Anode
• 5 kg Noble Metal, 0.15 g U, 0.045 g TRU,
0.129 g RE
Cathode
• 1.5 g Noble Metal, 2.9 kg U
Metal
Molten Salt (to #3)
Anode
• 28 g Noble Metal, 1 kg U, 15 g TRU, 14 g
RE, 18.8 kg NaCl-KCl
Operating Conditions
9-14
T= 1000 K, I= 500 A, 2 hours
1 PWR assembly
Electrowinning Provide Feed for Fuel
Step 5
Input from molten salt from #3
• 10 kg U, 4 kg TRU, 4 kg RE, 4.3 kg Na
as alloy, 188 kg NaCl-KCl
Output
Cathode
• U extraction 9.2 kg
• U/TRU/RE extraction, 1 kg U, 4 kg
Metal
TRU, 0.5 kg RE
Molten Salt (to #7)
• 3.5 kg RE, 192 kg NaCl-KCl
Operating Conditions
9-15 U
T= 1000 K, I= 500 A, 3.7 hours for U/TRU/RE, 6.2 hours for
1 PWR assembly
ATW Fuel Fabrication
Step 6
Input
Vacuum Casting Furnace
• From #5
1 kg U, 4 kg TRU, 0.5 kg RE
• From #1
metal
14.7 kg Zr
Output
20 kg alloy fuel
Fuel Preparation
Metal
• Rods machined to proper diameter
• Rods cut into pellets for use in fuel pins
Operating Conditions: Vacuum Casting
T= 1900 K, moderate vacuum
9-16
Reduction of Rare Earths
Input
• Molten Salt from #5
3.4 kg RE
• 1.7 kg Na as alloy
• 188 kg NaCl-KCl
Output
• Molten Salt (to step 3)
189 kg NaCl-KCl
• Metal Phase
3.4 kg RE
Step 7
Metal
Operating Conditions
T= 1000 K, 8 hours
9-17
Recycle Salt: Reduction of Oxide
Step 8
Input
• Chlorination
189 kg CaO, 1870 kg CaCl2,
239 kg Cl2
• Electrowinning
2244 kg CaCl2
Output
• Chlorination
2244 kg CaCl2, 54 kg O2
• Electrowinning (to #2)
Operating Conditions
1870 kg CaCl2, 135 kg
T= 1000 K, I= 2250 A, 80 9-18
hours
Ca, (239 kg Cl2)
Electrorefining
9-19
ATW Assembly for Feed Material
Step 9
• ATW assembly is used to produce feed material
for electrorefining process
• Hardware removed from assembly
• ATW fuel chopped into small sections
Cladding is sent to storage
Offgas is collected and stored
9-20
U, TRU, and Fission Product Separation
Step 10
Input
• 45 kg from Step 9 (includes Zr)
Includes 9.5 kg TRU, 0.5 kg
RE
Output
• Anode
33 kg NM, 2 kg U
• Molten Salt (to #11)
Anode
TRU
Small amounts of U, TRU,
RE
Operating Conditions
• Cathode (to #12)
9-21
T= 1000 K, I= 500 A, 6.7 hours
Most TRU, RE
Electrowinning TRU for Salt Recycle
Step 11
Input from molten salt from #10
• 1.7 kg U, 7.4 kg TRU, 0.5 kg RE, 2.8 kg
Na as alloy, 188 kg NaCl-KCl
Output
Cathode (to #12)
• U/TRU/RE extraction, 1.7 kg U, 7.4 kg
TRU, 0.1 kg RE
Molten Salt (to #13)
• 0.4 kg RE, 191 kg NaCl-KCl
Metal
Operating Conditions
T= 1000 K, I= 500 A, 6.1hours for U/TRU/RE
Salt from 10 electrorefining systems
9-22
ATW Fuel Fabrication
Step 12
Input
Vacuum Casting Furnace
• From #10 and #11
1.7 kg U, 17 kg TRU, 0.5 kg RE,
• From #1
metal
52 kg Zr
Output
71 kg alloy fuel
Fuel Preparation
Metal
• Rods machined to proper diameter
• Rods cut into pellets for use in fuel pins
Operating Conditions: Vacuum Casting
T= 1900 K, moderate vacuum
Four Batches required to prepare fuel alloy
9-23
Reduction to Remove Rare Earths
Step 13
Input
• 0.4 kg RE (from #11), 188 kg
NaCl-KCl, 0.2 kg Na as alloy
Output
• Molten Salt
188 kg NaCl-KCl
• Metal Phase
0.4 kg RE
Metal
Operating Conditions
T= 1000 K, 8 hours
9-24
Treatment Scheme
• To treat 70000 metric tons of spent fuel
2 MT/day in each plant
2 chemical plants required to treat LWR
and ATW waste
* 300 day/year at 24 hours/day
Need 60 years
• For ATW waste
360 kg/day/plant
9-25
9-26
DOR=Direct Oxide Reduction
ATW Waste
9-27
Project TRU Waste to Repository
• Results based on simulations
LWR, 12 ppm TRU
ATW spent fuel, 10 ppm TRU
• Should expect high amounts due to engineering
scale
• Total TRU to repository
In 60 years, < 300 kg TRU in approximately
900 MT
9-28
Segregated Waste Streams
• Uranium
Low activity of waste
• Metals
Spent fuel clad and assembly to repository
• Transition metals and lanthanides
Oxides to repository
• Active Metals into engineered containers
• No separation of fissile metals
9-29
Reprocessing Overview
• The oxide fuel is dispersed in a molten (800 C) CaCl2
/CaF2 salt along with calcium metal and reduced to a
metal.
• The reduced metals are dissolved in a molten Cu - 40%
Mg - Ca receiver alloy.
• Uranium exceeds the solubility limits in this receiver
alloy and precipitates out as a solid metal.
• Pu, other actinides, rare-earths, and noble metal fission
products accumulate in the receiver alloy.
• The the alkali metals (Rb and Cs), alkali-earths (Sr and
Ba),and remaining iodine and bromine accumulate in
the CaCl2/CaF2 salt.
• The salt contains CaO from the reduction process. The
CaO is electrolytically reduced to metal for reuse.
9-30
Overview
• The actinides are separated from the acceptor
alloys by distilling the Cd-Mg alloy.
• The electrorefining process described above is
then used to purify the final metal uranium and
actinide product.
• Because there is no water to enhance criticality,
containers typically can have 20 or 30 kg of
fissile material
9-31
Overview
• Introduction to Room Temperature Ionic Liquids
Physical Properties
Coordination Chemistry
Metal Deposition
• From Lecture of Dave Costa, LANL
9-32
Room Temperature Molten Salts as Alternatives to
Traditional Actinide Recovery Processes
• Project Goal: Develop a room temperature ionic liquid
flow sheet for the electrochemical recovery and
purification of uranium and plutonium from spent
nuclear feed stocks.
• Proliferation resistant recovery of uranium/plutonium
• Uranium/Plutonium metal production
• Zero effluent discharge operations
• Room temperature operation
• Greater criticality safely margin
9-33
Current Pu Processing
9-34
Plutonium
9-35
Criticality calculations for Pu metal solution systems
Metal-Water Mix
Metal-AlCl3 Mix
Metal-BF4 Mix
1.0E+04
Critical Mass (kg)
1.0E+03
1.0E+02
1.0E+01
1.0E+00
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05
Pu Concentration (g/liter)
Harmon, C.D.; Smith, W.H.; Costa, D.A. Rad. Phy Chem. 60, 157, (2001). Criticality
calculations for plutonium metal-room temperature ionic liquid solutions
9-36
Ionic Liquid Cations
N
N
N
mp = 150 °C
N
Bonhote Inorg. Chem. 1996, 35, 1168
N
N
N
mp = 56 °C
N
N
N
ambient temperature liquids...
O
N
O
N
MacFarlane J. Phys.
Chem. 1999, 103, 4164
N
N
N
O
9-37
Ionic Liquids: Quaternary
Ammonium Cations
N
viscosity = 167 cP
viscosity = 595 cP
N
NTf2
NTf2
MacFarlane J. Phys. Chem. B. 1998, 102, 8860
+ alkylhalide
N
CH3 CN
N
R
X
N
R
+ LiNTf 2
H2 O
N
X
N
mp = 150 °C
R
+ LiX
NTf2
N
mp = 56 °C
N
N
N
N
ambient temperature liquids...
9-38
Physical Properties
Density (g/mL)
1.52
F3C
1.35
1.32
1.30
10
140
8
120
100
6
80
4
60
2
40
O
N
S
S
O
1.38
160
viscosity (cP @30 °C)
O
1.39
O
20
CF3
Condu ctance (mS/cm @30 °C)
Reference:
H2O = 1.002 cP
C6H6 = 0.64 cP
Olive Oil = 81
1.45
Reference:
0.1M KCl = 14mS/cm
0
EMI MOMP BMP Propyl Butyl Pentyl Hexyl
O
NTf2
N
N
N
NTf2
N
NTf2
N R
NTf2
9-39
Electrochemical Windows of Ionic
Liquids
The electrochemical window of an imidazolium NTf salt is compared with a typical ammonium
2
ionic liquid. The CV trace is referenced to Ag/AgOTf and confirmed with ferrocene.
Cp Fe
2
N
N + N
NTf2
NTf2
4000
3000
2000
1000
0
-1000 -2000 -3000 -4000
Potential (mV)
9-40
Potential Ionic Liquid Anions
350
12
300
ethylene glycol
viscosity (cP)
cyclohexanol
250
8
200
150
6
N + N
4
100
0
0
0.1 M Bu4N+
-B(C F ) /CH Cl
6 5 4
2 2
PF 6
BF4
3
CH CO
2
2CF3)2
C F CO
3 7
2
-N(SO
SO 3CF 3
CF 3CO 2
2
N(SO 2CF 3) 2
50
conductivity (mS/cm)
H3PO4
10
N + N
0.1 M NaCl/H2O
• Bonhote et. al. Inorg. Chem. 1996, 35, 1168.
• Dupont et. al. Organometallics 1998, 17, 815.
abbreviated as -NTf2
9-41
Structural Characterization of a Room
Temperature Ionic Liquid
P21/n
a = 12.225(3) Å
b = 8.547(2)
c = 34.322(8)
b = 92.749(4)°
R = 6.8%
F 3C
O
S
N
O
S
F 3C
O
O
O
CF3
A
S
S
N
O
S
O
O
CF3
B
Top view
N
N
CF3
O
S
3dx2-y2
CF3
S(1)—N(3) = 1.571(4) Å
S(2)—N(3) = 1.580(4)
S—Oaverage = 1.425
S(1)–N(3)–S(2) = 126°
O
O
O
Side view
Nlp
S
Nlp
O
O
N—S in H3N—SO3–
= 1.75 Å
N—S in HN(SO2CF3)2 = 1.644 Å
S
3dz2
CF3
CF3
O
O
9-42
Coordination Modes of N(SO2CF3)2
O O
S CF 3
M N
S O
F3C O
O
S O
O
S
1-O
O
CF 3
N S
O
O
S
O
O CF
3
See Chem. Commun., 2005, 1438-1440
N
O CF 3
1-N
M
CF 3
M
2-N,O
O
CF 3
S
M
N
O
S
O
CF 3
2-O,O
9-43
Coordination Chemistry of NTf2: Synthesis of
Fp–NTf2
OC
OC
HNTf2
Fe
Me
n(CO): 2005, 1945 cm-1
-CH4
OC
Fe
OC
N
SO2 CF3
SO2 CF3
2071, 2029 cm-1
AgNTf2
-AgI
OC
Fe
OC
I
2020, 1960 cm-1
9-44
Coordination Chemistry of NTf2: Synthesis of
Fp–NTf2
OC
OC
HNTf2
Fe
Me
n(CO): 2005, 1945 cm-1
BF4
SbF6
ClO4
OSO2CF3
-CH4
OC
Fe
OC
N
SO2 CF3
SO2 CF3
2071, 2029 cm-1
AgNTf2
-AgI
OC
Fe
OC
I
2020, 1960 cm-1
n(CO)
2072, 1994 cm-1
2074, 2039
2071, 2009
2068, 2017
9-45
Coordination Chemistry of NTf2:
Synthesis of Fp–NTf2
HNTf2
Fe
OC
-CH4
Me
OC
n(CO): 2005, 1945 cm-1
BF4
SbF6
ClO4
OSO2CF3
n(CO)
2072, 1994 cm-1
2074, 2039
2071, 2009
2068, 2017
F 3C
O
S
N
O
S
O
O
CF3
A
OC
Fe
N
OC
SO2 CF3
AgNTf2
-AgI
SO2 CF3
2071, 2029 cm-1
OC
Fe
OC
I
2020, 1960 cm-1
Fe(1)–N(1) 2.084(4) Å
N(1)–S(1)
1.630(4)
N(1)–S(2)
1.643(4)
S–Oave
1.421
S(1)–N(1)-S(2) 117.1(2)°
F 3C
O
S
N
O
S
O
O
CF3
B
9-46
Synthesis of Cp2Ti(NTf2)2: Novel Metal–Oxygen
Binding Mode
O
O
F 3C S
N
Cl
Ti
2 AgNTf2
-2 AgCl
Cl
O
O
Ti
O
O
S
S
F 3C
F 3C
O
S
N
O
S
O
O
CF3
A
CF3
N
O
Ti(1)—O(1) = 2.050(3) Å
S(1)—O(1) = 1.467(4)
S(1)—O(2) = 1.416(4)
CF3
S
O
N(1)—S(1) = 1.523(5)
N(1)—S(2) = 1.613(5)
S(1)–N(1)–S(2) = 126.1°
F 3C
O
S
N
O
S
O
O
CF3
B
9-47
Influence of –NTf2 Coordination on E1/2
Values
Reference: Ag/AgOTf/EMINTf2
Working electrode: platinum
Scan rate: 50 mV/s
CF3
O
S
O
N
CF3
S
Current
O
Ti
O S
N
O
S
O
O
CF3
O
F3 C
0.5
0.0
-0.5
+
Potential (V vs Fc/Fc )
Cp2Ti(NTf2)2
E1/2 = -0.103 V
-1.0
-1.5
Cp2TiCl2
E1/2 = -1.031 V
∆E1/2 = 0.928 V
9-48
Cyclic Voltammetry of [UCl6]2- Salts
U(V), U(IV), and U(III) are all stable species for [UCl6]-n (n=1, 2, 3)
Cl
Cl
Cl
Cl
U Cl
Cl
Cl
-
+e
- e-
Cl
Cl
Cl 2
U Cl
+e
-
-e
Cl
Cl
-
Cl
Cl
Cl 3
U
Cl
Cl
5+/4+
Reference: Ag/AgOTf/EMINTf2
Working electrode: platinum
Scan rate: 50 mV/s
4+/3+
Reversible 5+/4+ E1/2 = 0.27 V
Reversible 4+/3+ E1/2 = -1.98 V
1000
500
0
-500
-1000
-1500
-2000
Potential (mV)
9-49
-2500
Bulk Electrolysis of [UCl6][EMI]2 in
[EMI][NTf2]
1.2
Anodic Current
1.0
0.8
Potential (V)
U(IV)
0.6
0.4
Yellow
1.2
1.0
Cathodic Current
0.8
0.6
0.4
Pale
Blue
Current (µA)
Pale
Blue
Current (µA)
Current (µA)
Stirred Solution Voltammograms: 1.5 mm GC disc, 3 mV/s
0.2
Anodic Current
1.2
1.0
Potential (V)
U(V)
0.8
0.6
0.4
Potential (V)
U(IV)
• Eapp during bulk was set 300 mV positive of E1/2 for U(IV)/U(V) couple
• [U(V)Cl6]- is stable in [EMI][NTf2] on the bulk electrolysis time scale
• Coulometry was 94% efficient for a 1-electron oxidation process
9-50
0.2
Electroplating of Sodium and
MH + HNTf
MNTf + H
(1)
Potassium
2
2
2
M0 + NTf2-
MNTf2 + e-
(2)
5 µA
5 µA
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
Potential (V)
Standard reduction potential (aq): -2.714 V
-3.0
0
-1
-2
-3
Potential (V)
Standard reduction potential (aq): -2.924 V
Comparison to the actinide elements demonstrates electro-refining feasibility:
Thorium: -1.90
Neptunium: -1.86
Americium: -2.32
Uranium: -1.80
Plutonium: -2.07
9-51
Synthesis and Characterization of “U(NTf2)4”
RTIL Solutions
RTIL
UCl4 + 4 AgNTf2
-AgCl
"U(NTf2)4"
– 4 e-
Uranium Anode
UV/vis Characterization indicates that
U(IV) solutions are formed
[UCl6]2-
U(NTf2)4
Reversible uranium 4+/3+ E1/2 = -0.24 V
2000
1000
0
-1000
-2000
-3000
The 4+/3+ couple of “U(NTf2)x” shifts
1.74 V more positive compared to [UCl6]2-
Josh Smith
Potential (mV)
9-52
O
O
O
F3C
F3C
S
O
S
N
F3C
S
S
S
O
N
CF3
S
N
O
S
O
CF3
S
O
O
U
N
F3C
O
O
O
O
CF3
O
CF3
O
[UCl6]2–
U(NTf2)4
2000
1000
0
-1000
-2000
-3000
Potential (mV)
9-53
Summary and Future Directions
• RTIL’s are promising solvents for electrochemical applications enabling highquality data acquisition
• Exemplified with electrochemical results on several uranium and
titanium metal complexes
• Electrochemical plating and stripping demonstrated for mono- and
multi-valent electropositive metals
Future Work
• Electroplating:
• Analysis of metal precipitate on electrode surface with microscopy
• Quantitative electrochemical analysis
• Oxidative electrodissolution of metals into RTIL
• Further studies on the electroplating of actinide metals
9-54
Acknowledgements
RTIL Working Group
David Costa
NMT-15
Warren Oldham
C-INC
Uranium Disposition Team
Brad Schake, Minnie Martinez,
Jim Rocha, Coleman Smith, Phil Banks
Bridgett Williams NMT-15
ARIES
Rene Chavarria
NMT-15
Chris James
NMT-DO
Mike Stoll
NMT-15
Dave Kolman
NMT-15
Wayne Smith
MST-11
Doug Wedman
NMT-15
Plutonium Review
Los Alamos Primer
Carol Hogsett: LANL College
Recruiting Coordinator
ARIES Development Project
G.T. Seaborg Institute for
Transactinium Science
David Clark
NMT-DO
Web Keogh
NMT-DO
9-55