Transport through interacting quantum wires and nanotubes

Download Report

Transcript Transport through interacting quantum wires and nanotubes

Transport through junctions of
interacting quantum wires and
nanotubes
R. Egger
Institut für Theoretische Physik
Heinrich-Heine Universität Düsseldorf
S. Chen, S. Gogolin, H. Grabert, A. Komnik,
H. Saleur, F. Siano, B. Trauzettel
Overview






Introduction: Luttinger liquid in nanotubes
Multi-terminal circuits
Landauer-Büttiker theory for junction of
interacting quantum wires
Local Coulomb drag: Conductance and
perfect shot noise locking
Multi-wall nanotubes
Conclusions and outlook
Single-wall carbon nanotubes

Prediction: SWNT is a
Luttinger liquid with
g~0.2 to 0.3
Egger & Gogolin, PRL 1997
Kane, Balents & Fisher, PRL1997

Experiment: Luttinger
power-law conductance
through weak link,
gives g~0.22
Yao et al., Nature 1999
Bockrath et al., Nature 1999
Conductance scaling

Conductance across kink:
G  T  ,  ( g 1 1) / 2  g  0.22

Universal scaling of nonlinear conductance:
 eV   
ieV 

T dI / dV  sinh
 1  
2 2k BT 
 2 k BT  


 eV
 cot h
 2 k BT

 1
 
ieV 
 

Im  1  
2 2k BT 
 2

r.h.s. is only function of V/T
2
Evidence for Luttinger liquid
Yao et al., Nature 1999
Luttinger liquid properties





Momentum distribution: no
jump at Fermi surface,
power-law scaling
Tunneling density of states
power-law suppressed, with
different end/bulk exponent
Spin-charge separation
Fractional charge and
statistics
Networks of nanotubes:
Experiment? Theory?
Dekker group, Delft
Multi-terminal circuits: Crossed tubes
By chance…
Fusion: Electron beam welding
(transmission electron microscope)
Fuhrer et al., Science 2000
Terrones et al., PRL 2002
Nanotube Y junctions
Li et al., Nature 1999
Landauer-Büttiker theory ?

Standard scattering approach useless:



Elementary excitations are fractionalized
quasiparticles, not electrons
No simple scattering of electrons, neither at
junction nor at contact to reservoirs
Generalization to Luttinger liquids


Coupling to reservoirs via radiative boundary
conditions
Junction: Boundary condition plus impurities
Coupling to voltage reservoirs

Two-terminal case,
applied voltage
eU   L   R

Left/right reservoir injects `bare´ density of
R/L moving charges
 R0 ( L / 2)   L / 2vF
 L0 ( L / 2)   R / 2vF

Screening: actual charge density is
 ( x)   R   L  g 2 (  R0   L0 )
Egger & Grabert, PRL 1997
Radiative boundary conditions
Egger & Grabert, PRB 1998
Safi, EPJB 1999


Difference of R/L currents unaffected by
screening:  R ( x)   L ( x)   R0 ( x)   L0 ( x)
Solve for injected densities
boundary conditions for chiral density
near adiabatic contacts
 1

 1

eU
 2  1  R ( L / 2)   2  1  L ( L / 2)  
2vF
g

g

Radiative boundary conditions …




hold for arbitrary correlations and disorder in
Luttinger liquid
imposed in stationary state
apply to multi-terminal geometries
preserve integrability, full two-terminal
transport problem solvable by thermodynamic
Bethe ansatz
Egger, Grabert, Koutouza, Saleur & Siano, PRL 2000
Description of junction (node) ?
Chen, Trauzettel & Egger, PRL 2002
Egger, Trauzettel, Chen & Siano,
cond-mat/0305644

Landauer-Büttiker: Incoming and outgoing states
related via scattering matrix
out (0)  Sin (0)


Difficult to handle for correlated systems
What to do ?
Some recent proposals …

Perturbation theory in interactions
Lal, Rao & Sen, PRB 2002




Perturbation theory for almost no
transmission
Safi, Devillard & Martin, PRL 2001
Node as island
Nayak, Fisher, Ludwig & Lin, PRB 1999
Node as ring Chamon, Oshikawa & Affleck, cond-mat/0305121
Our approach: Node boundary condition for
ideal symmetric junction (exactly solvable)

additional impurities generate arbitrary S matrices,
no conceptual problem Chen, Trauzettel & Egger, PRL 2002
Ideal symmetric junctions

N>2 branches, junction with S matrix
 z 1 z

 z z 1
S 
...
...

 z
z


... z 

... z 
... ... 

... z  1
2
z
,  0
N  i
Crossover from full to no
transmission tuned by λ
implies wavefunction matching at node
1 (0)  2 (0)  ...  N (0)
j (0)  j ,in (0)  j ,out (0)
Boundary conditions at the node


Wavefunction matching implies density
matching 1 (0)  ...   N (0)
can be handled for Luttinger liquid
Additional constraints:



Kirchhoff node rule
Gauge invariance
I
i
0
i
Nonlinear conductance matrix
e I i
can then be computed exactly Gij 
h  j
for arbitrary parameters
Solution for Y junction with g=1/2
Nonlinear conductance:
8  Vi
2  V j


Gii  1 

1






U

U
i
j
9
9 j i 
with
eVi
 1 TB  ieU i  Vi / 2 
 Im  

2TB
2T
2

TB / D  w01/(1 g )
w0 ( N ,  ) 

2 N 2  2  2 N
N ( N  2)  2

Nonlinear conductance
g=1/2
1   F  eU
 2  3   F
Ideal junction: Fixed point




Symmetric system
breaks up into
disconnected wires at
low energies
Only stable fixed point
Typical Luttinger power
law for all conductance
coefficients
Solvable for arbitrary
correlations
g=1/3
Asymmetric Y junction



Add one impurity of strength W in tube 1
close to node
Exact solution possible for g=3/8 (Toulouse
limit in suitable rotated picture)
Nonperturbative crossover from truly
insulating node to disconnected tube 1 +
perfect wire 2+3
Asymmetric Y junction: g=3/8

Nonperturbative solution:
0
0
I1  I1  I , I 2,3  I 2,3  I / 2

Asymmetry contribution


 1 WB  2i I10  I / 2 / e 

I  eWB Im   
2T
2

WB  W 2 / D

Strong asymmetry limit:
I1  0, I 2,3  I
0
2, 3
I /2
0
1
Crossed tubes: Local Coulomb drag
Komnik & Egger, PRL 1998, EPJB 2001

Different limit: Weakly coupled crossed
nanotubes



Single-electron tunneling between tubes irrelevant
Electrostatic coupling relevant for strong
interactions, g  1 / 2
Without tunneling:
Local Coulomb drag
Hamiltonian for crossed tubes

Without tunneling:
1
2
H  H Lutt
 H Lutt
 c cos 4g1 (0) cos 4g2 (0)


vF
2
2
H 
dx  i  (i )

2g
 Rotated boson fields:
i
Lutt
 

 ( x)  1 ( x)  2 ( x)/ 2



Boundary condition decouples:U  (U1  U2 ) / 2
Hamiltonian also decouples!
Map to decoupled 2-terminal models

Two effective two-terminal (single impurity)
problems for g  2 g
H  H  H
H  H



Lutt

 c cos 8g (0)

Take over exact solution for two-terminal
problem
Dependence of current on cross voltage?
Crossed tubes: Conductance
G11
g=1/4, T=0
1) Perfect zero-bias anomaly
2) Dips are turned into peaks for finite
cross voltage, with new minima
Experiment: Crossed nanotubes
Kim et al., J. Phys. Soc. Jpn. 2001

Measure nonlinear
conductance G11 for
cross voltage
 20meV  U 2  20meV


Zero-bias anomaly for
small cross voltage
Conductance dip
becomes peak for
larger cross voltage
U1 (m eV)
Coulomb drag: Transconductance


Strictly local coupling: Linear transconductance G21 always vanishes
Finite length: Couplings in +/- sectors differ
c
c  c 
dx cos2( k F ,1  k F , 2 ) x 

L L / 2
L/2
1 /(1 2 g )
c

T / D    
 D
TB  TB Now nonzero linear transconductance,

B
except at T=0!
Linear transconductance: g=1/4

B
T 1
1
1  d  ' ( d   1 / 2)
G21   
2  1  d  ' ( d   1 / 2)
d   TB / 2T
Absolute Coulomb drag
Averin & Nazarov, PRL 1998
Flensberg, PRL 1998
Komnik & Egger, PRL 1998, EPJB 2001

For long contact & low temperature:
Transconductance approaches maximal
value

B

B
G21 (T  0, T / T  0)  1/ 2

At zero temperature, linear drag conductance
vanishes (in not too long contact)
G21 (T  0)  0
Coulomb drag shot noise
Trauzettel, Egger & Grabert, PRL 2002

Shot noise at T=0 gives important information
beyond conductance
P ( )   dte it I (t )I (0)

For two-terminal setup, one weak impurity,
DC shot noise carries no information about
fractional charge P  2eI (U )
BS

Crossed nanotubes: For U1  0,U 2  0  P1  0
must be due to cross voltage (drag noise)
Shot noise transmitted to other tube ?

Mapping to decoupled two-terminal problems
implies
I (t )I (0)  0



Consequence: Perfect shot noise locking
P1  P2  ( P  P ) / 2



Noise in tube 1 due to cross voltage, exactly equal
to noise in tube 2
Requires strong interactions, g<1/2
Effect survives thermal fluctuations
Multi-wall nanotubes: Luttinger liquid?



Russian doll structure, electronic transport in
MWNTs usually in outermost shell only
Typically 10 transport bands due to doping
Inner shells can create `disorder´


Experiments indicate mean free path   R...10 R
Ballistic behavior on energy scales
E  1
   / vF
MWNTs: Ballistic limit
Egger, PRL 1999




Long-range tail of interaction unscreened
Luttinger liquid survives in ballistic limit, but
Luttinger exponents are closer to Fermi
liquid, e.g.   1 N
End/bulk tunneling exponents are at least
one order smaller than in SWNTs
Weak backscattering corrections to
conductance suppressed as 1/N
Experiment: TDOS of MWNT
Bachtold et al., PRL 2001
(Basel group)



DOS observed from
conductance through
tunnel contact
Power law zero-bias
anomalies
Scaling properties
similar to a Luttinger
liquid, but: exponent
larger than expected
from Luttinger theory
Tunneling density of states: MWNT
Basel group, PRL 2001
Geometry dependence
end  2bulk
Interplay of disorder and interaction
Egger & Gogolin, PRL 2001, Chem. Phys. 2002
Rollbühler & Grabert, PRL 2001



Coulomb interaction enhanced by disorder
Microscopic nonperturbative theory:
Interacting Nonlinear σ Model
Equivalent to Coulomb Blockade: spectral
density I(ω) of intrinsic electromagnetic

dt
modes
P( E )  Re 
0


J (T  0, t )  
0
expiEt  J t 
d



I ( ) e it  1
Intrinsic Coulomb blockade

TDOS
Debye-Waller factor P(E):
 E / k BT
 ( E)
1 e
  dPE   
 / k BT
0
1 e
For constant spectral density: Power law with
exponent   I (  0)
Here:
1/ 2
2
U0


* n
*
I ( ) 
Re

i

/
D


D

D


2

*
R
2 ( D  D)

n 



D / D  1  0U 0 , D  v  / 2
*
2
F


Field/charge diffusion constant
Dirty MWNT


High energies: E  EThouless  D /(2R)
Summation can be converted to integral,
yields constant spectral density, hence power
R
law TDOS with

ln D* / D
2 0 D
2




Tunneling into interacting diffusive 2D metal
Altshuler-Aronov law exponentiates into
power law. But: restricted to   R
Numerical solution



Power law well below
Thouless scale
Smaller exponent for
weaker interactions,
only weak dependence
on mean free path
1D pseudogap at very
low energies
  10R,U 0 / 2vF  1, vF / R  1
Conclusions





Luttinger liquid behavior in SWNTs offers new
perspectives: Multi-terminal circuits
Theory beyond Landauer-Büttiker
New fixed points: Broken-up wires,
disconnected branches
Coulomb drag: Absolute drag, noise locking
Multi-wall nanotubes: Interplay disorderinteractions