Neutrino Oscillations and the Sudbury Neutrino Observatory

Download Report

Transcript Neutrino Oscillations and the Sudbury Neutrino Observatory

Data Processing for the Sudbury
Neutrino Observatory
Aksel Hallin
Queen’s,
October 2006
Sudbury Neutrino
Observatory
Support Structure
for 9500 PMTs,
60% coverage
12 m Diameter
Acrylic Vessel
1700 tonnes Inner
Shielding H2O
5300 tonnes Outer
Shield H2O
Urylon Liner and
Radon Seal
1000 tonnes D2O ($300 M)
Unique Signatures in SNO (D2O)
Charged-Current (CC)
e+d  e-+p+p
Ethresh = 1.4 MeV
e only
Neutral-Current (NC)
x+d  x+n+p
Ethresh = 2.2 MeV
Equally sensitive to e m t
Elastic Scattering (ES)
x+e-  x+ex, but enhanced for e
3 ways to
detect neutrons
Numerical tools for SNO
•
•
•
•
“Data Cleaning”
Monte Carlo
“Fitters”
“Physics Interpretation”
Raw Data: ti , xpmt , qi
Reconstruction
u
x
E
t
Particle ID (14 )
Signal Extraction
CC day d CC d  ES
CC ,  NC ,  ES ,
,
,
CC night dTeff dTeff
Physics interpretation
m , sin 2  ...
2
2
Observables
Photomultiplier tube
-position
-time
-charge
E Lddir

event
xi  Reconstructed
x
ti 
 t0
-vertex
-direction
win ( , c
n
Pdir (i , i , fit ,  fit N)
i i i , rfit ,  fit ,  fit )
-energy
 pmt ( )
( m d  m d  m d )
 hardware drift  2  N 21 N g ( ,  )e 1
RP(r ,  ,  ,  ) M (-isotropy
r ,  ,  )



 
cos


9

20cos
2


35cos
4




1 1
14
N ( N  1)

i 1 j i 1
ij
64
2 2
3 3
ij
ij

“Data Cleaning”
•
•
•
•
•
•
•
•
•
•
•
•
•
•
TABLE II: Number of events remaining in data set after each
step in the data processing described in Section 5.
.
Data Processing Step
Events Remaining
Total event triggers
450188649
Neutrino triggers (hit multiplicity)
191312560
Analysis Nhit cut (Nhit > 21)
10088842
Low-level cuts
7805238
`Cherenkov Box' cuts
3418439
Fiducial volume cut
67343
Energy threshold (Te > 5 MeV)
3440
Muon follower cut
2981
Atmospheric followers
2928
Total candidates
2928
Extracting the Solar  Flux
CC
NC
• PDFs: kinetic energy T, event
location R3, solar angle
correlation cos sun
ES
Maximum
Likelihood Fit
 CC  NC  ES
OR
 e mt

Assumption:
No 8B shape distortion

shape constrained fit:
[in 106 cm-2 s-1]
8B
No
8B
constrained
SNO
 5.09
0.44
0.46
(stat.)
(syst.)
0.43
0.43
1.57
0.55
unconstrained


6.42
(stat.)
(syst.)
shape constraint: SNO
1.57
0.58
3 Phases of SNO: neutron (NC) detection
methods (systematically different)
Phase I (D2O)
Nov. 99 - May 01
Phase II (salt)
July 01 - Sep. 03
n captures on
2H(n, g)3H
Effc. ~14.4%
NC and CC separation
by energy, radial, and
directional
distributions
2 t NaCl. n captures on
35Cl(n, g)36Cl
Effc. ~40%
NC and CC separation
by event isotropy
35Cl+n
2H+n
Phase III (3He)
Nov. 04-Dec. 06
40 proportional
counters
3He(n, p)3H
Effc. ~ 30% capture
Measure NC rate with
entirely different
detection system.
5 cm
8.6 MeV
n
6.25 MeV
3H
p
3He
3H
n + 3He  p + 3H
36Cl
What does it mean to calibrate?
• Determine unknown parameters in the
Monte Carlo. In SNO, these are almost all
optical constants.
• Measure how well we reconstruct position,
direction, energy, isotropy as a function of
position in the detector and calendar time.
In SNO, the calibration effort dominates the analysis. Typically 90% of the
analysis effort is used to calibrate, measure backgrounds, and understand
systematics; the signal extraction is quite standard. Improvements in the
analysis come about because of improved calibration.
SNO Detector Livetime
Phase III Livetime: Nov 27, 2004 to Nov 28, 2005
Dec 1/05
Mar 1/05
Jun 1/05
Sep 1/05
Dec 1/05
RUN TYPE
# OF DAYS
PERCENTAGE
========================================
NEUTRINO
249.58
68.19
SUPERNOVA
0.14
0.04
CALIBRATION
89.26
24.39
OTHER
14.47
3.95
NO RUN
12.55
3.43
Calibration Source Manipulator
Umbilicals
Manipulation
Detector Interface
Radon/Light Barrier
Accuracy
< 2 cm single axis
~ 5 cm triple axis
Remote Operation/Interlocks
Stringent Cleanliness Requirements
337,365,386,
420,500,620
nm
wavelengths
45 Hz Pulse
rate
Intensity
dynamic
range about
1e7
600 ps pulse
width
Optical Analysis
N ij  N i ij RijTij Lij  j e
  d d  d  d a a  d h h 
Number of in-time hits in run i and pmt j = (Number of photons emitted in run i) x
(solid angle of pmt j and run i) x (pmt angular response) x
(transmssion through acrylic) x (laserball intensity distribution) x
(efficiency of pmt j) x (transmission through water and acrylic)
Remove unknown individual
PMT efficiencies with “occratio”
Oij 
Ni ij RijTij Lij
Nooj RojToj Loj
Typically 40 runs x 7000 pmts = 280,000 data points
Fit for about 400 parameters:
Ni , R( ), L( ,  ), d , h ,  a
e
 d  d  a a  h h 
Optical Analysis
D2O Attenuation
H2O Attenuation
PMT calibrations, PMT angular response, D20, acrylic,H2O
PMT Angular Response
Swapped pmts- angle of rotation