Transcript Document

Chapter 12
The Operon
12.1 Introduction
 Gene expression can be controlled at any of several stages,
transcription, processing, and translation. (그림 그려서 설명)
 1961년 Jacob과 Monod: provided the basic concept in bacteria.
- trans-acting product can function on any copy of its target DNA.
This implies that it is a diffusible protein or RNA.
- cis-acting site affects the activity only of sequences on its own
molecule of DNA (or RNA); this property usually implies that the
site does not code for protein.
- structural gene is simply any gene that codes for a protein (or an
RNA) product other than a regulator.
- regulator gene simply describes a gene that codes for a protein (or
an RNA) involved in regulating the expression of other genes
(usually at the level of transcription).
 Fig. 12.1: a regulator gene codes for a protein that controls
transcription by binding a particular site(s) on DNA.
 Regulation in either a positive manner (the interaction turns the gene
on) or a negative manner (the interaction turns the gene off)
 cis-acting elements: promoter, terminator, other regulatory sites
Figure 12.1. A regulator gene codes for a protein that acts at a target
site on DNA.
12.2 Regulation Can Be Negative or Positive
Key Concepts
 In negative regulation, a repressor protein binds to an operator to
prevent a gene from being expressed.
 In positive regulation, a transcription factor is required to bind at the
promoter in order to enable RNA polymerase to initiate transcription.
 A classic mode of control in bacteria is negative; the “default state”
is to be expressed (Fig. 12.2).
- repressor is a protein that inhibits expression of a gene. It may act
to prevent transcription by binding to an operator site in DNA, or to
prevent translation by binding to RNA.
- operator is the cis-acting site on DNA at which a repressor protein
binds to prevent transcription from initiating at the adjacent
promoter.
 An alternative mode of control is positive; default state is inactive
(the most common mode in eukaryotes) (Fig. 12.3)
- transcription factor is required to assist RNA polymerase to
initiate transcription at specific promoter(s), but is not itself part of
the enzyme.
 Trans-acting factors function by recognizing a very short sequence
in DNA, usually <10 bp; RNA polymerase covers >70 bp, but the
crucial sequences that it recognizes are the hexamers centered at -35
and -10.
Figure 12.2. In negative control, a trans-acting repressor binds to the cisacting operator to turn off transcription.
Figure 12.3. In positive control, trans-acting factors must bind to cisacting sites in order for RNA polymerase to initiate transcription at the
promoter.
12.3 Structural Gene Clusters Are Coordinately Controlled
Key Concepts
 Genes coding for proteins that function in the same pathway may be
located adjacent to one another and controlled as a single unit that is
transcribed into a polycistronic mRNA.
 Bacterial structural genes are often organized into clusters that
include genes coding for proteins whose functions are related.
 The cluster of the three lac structural genes, lacZYA, is typical (Fig.
12.4).
 The key feature is that the cluster is transcribed into a single
polycistronic mRNA from a promoter where initiation of
transcription is regulated.
 lacZ codes for β-galactosidase; tetramer; lactose is cleaved into
glucose and galactose.
 lacY codes for β-galactoside permease; membrane-bound protein;
transports β-galactosides into the cell.
 lacA codes for β-galactoside transacetylase, transfers an acetyl
group from acetyl-CoA to β-galactosides.
- operon is a unit of bacterial gene expression and regulation,
including structural genes and control elements in DNA recognized
by regulator gene product(s).
Figure 12.4. The lac operon occupies ~6000 bp of DNA. At the left the
lacI gene has its own promoter and terminator. The end of the lacI region
is adjacent to the promoter, P. The operator, O, occupies the first 26 bp of
the transcription unit. The long lacZ gene starts at base 39, and is followed
by the lacY and lacA genes and a terminator.
12.4 The lac Genes Are Controlled by a Repressor
Key Concepts
 Transcription of the lacZYA gene cluster is controlled by a repressor
protein that binds to an operator that overlaps the promoter at the start
of the cluster.
 The repressor protein is a tetramer of identical subunits coded by the
gene lacI.
 Transcription of the lacZYA genes is controlled by a regulator
protein synthesized by the lacI gene.
 The lac genes are controlled by negative regulation: they are
transcribed unless turned off by the regulator protein.
 The repressor is a tetramer of identical subunits of 38 kD each.
There are ~10 tetramers in a wild-type cell.
 The repressor functions by binding to an operator (formally denoted
Olac) at the start of the lacZYA cluster. The operator lies between the
promoter (Plac) and the structural genes (lacZYA).
 When the repressor binds at the operator, it prevents RNA
polymerase from initiating transcription at the promoter.
 The operator extends from position -5 just upstream to position +21
within the transcription unit; thus it overlaps the right end of the
promoter (Fig. 12.5)
Figure 12.5. Repressor and RNA polymerase bind at sites that overlap
around the transcription startpoint of the lac operon.
12.5 The lac Operon Can Be Induced
Key Concepts
 Small molecules that induce an operon are identical with or related to
the substrate for its enzymes.
 -galactosides are the substrates for the enzymes coded by lacZYA.
 In the absence of -galactosides the lac operon is expressed only at a
very low (basal) level.
 Addition of specific -galactosides induces transcription of all three
genes of the operon.
 The lac mRNA is extremely unstable; as a result, induction can be
rapidly reversed.
 The same types of systems that allow substrates to induce operons
coding for metabolic enzymes can be used to allow end-products to
repress the operons that code for biosynthetic enzymes.
 Bacteria need to respond swiftly to changes in their environment.
- Induction: the synthesis of enzymes in response to the appearance
of a specific substrate. This type of regulation is widespread in
bacteria, as well as in unicellular eukaryotes (such as yeasts).
 Fig. 12.6: summarizes the essential features of induction. In the
absence of inducer, the operon is transcribed at a very low basal
level. The transcription is stimulated as soon as inducer is added.
The lac mRNA is extremely unstable and decays with a half-life of
only ~3 minutes. When inducer is removed, synthesis of enzyme
ceases almost immediately (as the mRNA is degraded), but the βgalactosidase in the cell is more stable than the mRNA, so the
enzyme activity remains at the induced level for longer.
Figure 12.6. Addition of inducer
results in rapid induction of lac
mRNA, and is followed after a short
lag by synthesis of the enzymes;
removal of inducer is followed by
rapid cessation of synthesis.
 If, however, tryptophan is provided in the medium on which the
bacteria are growing, the production of the enzyme is immediately
halted. This effect is called repression.
- Repression: the ability of bacteria to prevent synthesis of certain
enzymes when their products are present; more generally, refers to
inhibition of transcription (or translation) by binding of repressor
protein to a specific site on DNA (or mRNA).
 Induction and repression represent the same phenomenon.
- inducers: small molecules that cause the production of enzymes
able to metabolize them
- corepressors: small molecules that prevent the production of
enzymes able to synthesize them
12.6 Repressor Is Controlled by a Small-Molecule Inducer
Key Concepts
 An inducer functions by converting the repressor protein into a form
with lower operator affinity.
 Repressor has two binding sites, one for the operator and another for
the inducer.
 Repressor is inactivated by an allosteric interaction in which binding
of inducer at its site changes the properties of the DNA-binding site.
 The ability to act as inducer or corepressor is highly specific. Only
the substrate/product or a closely related molecule can serve. For
the lac system, the natural inducer is a by-product of the lacZ
enzyme, β-1,6-allolactose.
- Gratuitous inducers: molecules that induce enzyme synthesis but
are not metabolized (such as isopropylthiogalactoside; IPTG).
 Fig. 12.7: shows that in the absence of an inducer the genes are no
transcribed.
 Fig. 12.8: shows that when an inducer is added the repressor is
converted into an inactive form allowing gene expression.
Figure 12.7. Repressor maintains the lac operon in the inactive condition by binding
to the operator. The shape of the repressor is represented as a series of connected
domains as revealed by its crystal structure (see later).
Figure 12.8. Addition of inducer converts repressor to an inactive form
that cannot bind the operator. This allows RNA polymerase to initiate
transcription.
 The repressor has two binding sites; one for the operator and one
for the inducer. When the inducer binds at its site, it changes the
conformation of the protein in such a way as to influence the
activity of the operator-binding site (called allosteric control).
- Coordinate regulation: the common control of a group of genes.
Induction accomplishes a coordinate regulation: all the genes are
expressed (or not expressed) in unison.
12.7 cis-Acting Constitutive Mutations Identify the Operator
Key Concepts
 Mutations in the operator cause constitutive expression of all three lac
structural genes.
 These mutations are cis-acting and affect only those genes on the
contiguous stretch of DNA.
 Mutations in the regulatory circuit may either abolish expression of
the operon or cause unregulated expression.
- uninducible: mutant that cannot be expressed at all.
- constitutive gene expression: the continued expression of a gene
that does not respond to regulation
 The operator was originally identified by constitutive mutations,
denoted OC. The mutation changes the operator so that the
repressor no longer binds to it. The operon is transcribed
constitutively (Fig. 12.9).
- cis-dominant: site or mutation affects the properties only of its
own molecule of DNA. The operator controls the adjacent genes
irrespective of the presence in the cell of other alleles of the site.
The OC mutation is cis-dominant.
Figure 12.9. Operator mutations are constitutive because the operator is unable
to bind repressor protein; this allows RNA polymerase to have unrestrained
access to the promoter. The Oc mutations are cis-acting, because they affect only
the contiguous set of structural genes.
12.8 trans-Acting Mutations Identify the Regulator Gene
Key Concepts
 Mutations in the lacI gene are trans-acting and affect expression of all
lacZYA clusters in the bacterium.
 Mutations that eliminate lacI function cause constitutive expression
and are recessive.
 Mutations in the DNA-binding site of the repressor are constitutive
because the repressor cannot bind the operator.
 Mutations in the inducer-binding site of the repressor prevent it from
being inactivated and cause uninducibility.
 Mutations in the promoter are uninducible and cis-acting.
 Constitutive transcription is also caused by mutations of the lacItype, which are caused by loss of function.
 Fig. 12.10: shows that the lacI- mutants express the structural
genes all the time (constitutively), irrespective of whether the
inducer is present or absent, because the repressor is inactive.
 OC mutation are cis-dominant, whereas lacI- mutants are recessive.
Figure 12.10. Mutations that inactivate the lacI gene cause the operon to
be constitutively expressed, because the mutant repressor protein cannot
bind to the operator.
12.9 Multimeric Proteins Have Special Genetic Properties
Key Concepts
 Active repressor is a tetramer of identical subunits.
 When mutant and wild-type subunits are present, a single lacI–d mutant
subunit can inactivate a tetramer whose other subunits are wild-type.
 lacI–d mutations occur in the DNA-binding site. Their effect is
explained by the fact that repressor activity requires all DNA-binding
sites in the tetramer to be active.
 An important feature of the repressor is that it is multimeric. When
two different alleles of the lacI gene are present, the subunits made
by each can associate to form a heterotetramer, whose properties
differ from those of either homotetramer.
- Interallelic complementation (intragenic complementation):
type of interaction between subunits is a characteristic feature of
multimeric proteins.
 Negative complementation occurs between some repressor
mutants, as seen in the combination of lacI-d with lacI- genes. The
–d notation indicates that this variant of the negative type is
dominant when paired with a wild-type allele (dominant negative)
(Fig. 12.11).
Figure 12.11. A lacI–d mutant gene makes a monomer that has a damaged DNA
binding site (shown by the red circle). When it is present in the same cell as a wildtype gene, multimeric repressors are assembled at random from both types of
subunits. It only requires one of the subunits of the multimer to be of the lacI–d type
to block repressor function. This explains the dominant negative behavior of the lacI–
d mutation.
12.10 The Repressor Monomer Has Several Domains
Key Concepts
 A single repressor subunit can be divided into the N-terminal DNAbinding domain, a hinge, and the core of the protein.
 The DNA-binding domain contains two short a-helical regions that
bind the major groove of DNA.
 The hinge region inserts into the minor groove as a short, folded a
helix.
 The inducer-binding site and the regions responsible for
multimerization are located in the core.
 The repressor has several domains. The DNA-binding domain
occupies residues 1-59 and is known as the headpiece.
 The N-terminus of the monomer consists of two a-helices
separated by a turn. This is a common DNA-binding motif called
the HTH (helix-turn-helix) (Figure 12.12).
Figure 12.12. The structure of a monomer of Lac repressor
identifies several independent domains.
12.11 Repressor Is a Tetramer Made of Two Dimers
Key Concepts
 Monomers form a dimer by making contacts between core domains 1
and 2 and potentially between the oligomerization helices.
 Dimers form a tetramer by interactions between the oligomerization
helices.
 Fig. 12.13: shows the structure of the tetrameric core. It consists of
two dimers.
 lacIs mutations make the repressor unresponsive to the inducer, so
that the operon is uninducible.
 Fig. 12.14: shows how the monomers are organized into the
tetramer.
Figure 12.13. The crystal structure of the
core region of Lac repressor identifies the
interactions between monomers in the
tetramer.
Figure 12.14. The repressor tetramer consists of two dimers.
12.12 DNA-Binding Is Regulated by an Allosteric Change in
Conformation
Key Concepts
 The DNA-binding domain of each monomer within a dimer inserts
into the major groove of DNA.
 The hinge helix inserts into the minor groove of operator DNA.
 Active repressor has a conformation in which the two DNA-binding
domains of a dimer can insert into successive turns of the double helix.
 Inducer binding disrupts the hinge helix and changes the conformation
so that the two DNA-binding sites are not in the right geometry to
make simultaneous contacts.
 The dimeric form of intact repressor allows two headpieces to
contact the operator simultaneously, each binding to one half-site.
 A key element of binding is the insertion of the short hinge helix
into the minor groove of operator DNA, binding the DNA by ~45°.
This bend orients the major groove for HTH binding (Fig. 12.15).
Figure 12.15. Inducer changes the
structure of the core so that the
hinge helix unfolds and the HTH
regions of repressor dimer are no
longer in an orientation that
permits binding to DNA.
12.13 Mutant Phenotypes Correlate with the Domain Structure
Key Concepts
 Different types of mutations occur in different domains of the
repressor subunit.
 Fig. 12.16: mutations in the Lac repressor
Figure 12.16. The locations of three type of mutations in lactose
repressor are mapped on the domain structure of the protein.
12.14 Repressor Protein Binds to the Operator
Key Concepts
 Repressor protein binds to the double-stranded DNA sequence of the
operator.
 The operator is a palindromic sequence of 26 bp.
 Each inverted repeat of the operator binds to the DNA-binding site of
one repressor subunit.
 The repressor binds to double-stranded DNA containing the
sequence of the wild-type lac operator. The repressor does not bind
DNA from an OC mutant.
 The operator has a feature common to many recognition sites for
bacterial regulator proteins: it is a palindrome (highlighted in Fig.
12.17).
- palindrome: DNA sequence that reads the same on each strand of
DNA when the strand is read in the 5´ to 3´ direction. It consists of
adjacent inverted repeats.
 Fig. 12.18: shows that the region of DNA protected from nucleases
by bound repressor lies within the region of symmetry, comprising
the 26 bp region from -5 to +21.
 Within a central region extending over the 13 bp from +5 to +17,
there are eight sites at which single base-pair substitutions cause
constitutivity.
Figure 12.17. The lac operator has a symmetrical sequence. The sequence
is numbered relative to the startpoint for transcription at +1. The pink
arrows to left and right identify the two dyad repeats. The green blocks
indicate the positions of identity.
Figure 12.18. Bases that contact the repressor can be identified by chemical
crosslinking or by experiments to see whether modification prevents binding.
They identify positions on both strands of DNA extending from +1 to +23.
Constitutive mutations occur at 8 positions in the operator between +5 and +17.
12.15 Binding of Inducer Releases Repressor from the Operator
Key Concepts
 Inducer binding causes a change in repressor conformation that
reduces its affinity for DNA and releases it from the operator.
 Various inducers cause characteristic reductions in the affinity of
the repressor for the operator, suggesting that induction results
from a reduction in the attraction between operator and repressor.
 Fig. 12.19: two models for repressor action.
Figure 12.19. Does the inducer
bind to free repressor to upset an
equilibrium (left) or directly to
repressor bound at the operator
(right)?
12.16 Repressor Binds to Three Operators and Interacts with RNA
Polymerase
Key Concepts
 Each dimer in a repressor tetramer can bind an operator, so
that the tetramer can bind two operators simultaneously.
 Full repression requires the repressor to bind to an additional
operator downstream or upstream as well as to the operator at
lacZ promoter.
 Binding of repressor at the operator stimulates binding of RNA
polymerase at the promoter but precludes transcription.
 Each dimer can bind an operator sequence. This enables the intact
repressor to bind to two operator sites simultaneously.
 There are two further operator sites in the initial region of the lac
operon. The original operator, O1, is located just at the start of the
lacZ gene. It has the strongest affinity for repressor. Weaker
operator sequences (sometimes called pseudo-operators) are
located on either side; O2 is 410 bp downstream of the startpoint in
lacZ and O3 is 88 bp upstream of it in lacI.
 Fig. 12.20: shows what happens when a DNA-binding protein can
bind simultaneously to two separated sites on DNA.
 Fig. 12.21: A scale model for binding of tetrameric repressor to
two operators.
Figure 12.20. If both dimers in a repressor tetramer bind to DNA, the
DNA between the two binding sites is held in a loop.
Figure 12.21. When a repressor tetramer binds to two operators, the
stretch of DNA between them is forced into a tight loop. (The blue
structure in the center of the looped DNA represents CAP, another
regulator protein that binds in this region.)
 Elimination of either the downstream operator (O2) or the
upstream operator (O3) reduces the efficiency of repression by 2×
to 4× . If, however, both O2 and O3 are eliminated, repression is
reduced 100×.
 The binding of repressor actually enhances the binding of RNA
polymerase! The bound enzyme is prevented from initiating
transcription, though.
12.17 Repressor Is Always Bound to DNA
Key Concepts
 Proteins that have a high affinity for a specific DNA sequence also
have a low affinity for other DNA sequences.
 Every base pair in the bacterial genome is the start of a low-affinity
binding-site for repressor.
 The large number of low-affinity sites ensures that all repressor protein
is bound to DNA.
 Repressor binds to the operator by moving from a low-affinity site
rather than by equilibrating from solution.
 It is likely that all proteins with a high affinity for a specific
sequence also possess a low affinity for any (random) DNA
sequence.
 There is only one high affinity site (for a repressor tetramer) in the
E. coli genome: the operator. The remainder of the DNA provides
low-affinity binding sites.
 The large number of low-affinity sites means that all or virtually all
repressor is bound to DNA and none remains free in solution (by
an equilibrium equation of Fig. 12.22).
Figure 12.22. Repressor binding to random sites is
governed by an equilibrium equation.
12.18 The Operator Competes with Low-Affinity Sites to Bind
Repressor
Key Concepts
 In the absence of inducer, the operator has an affinity for repressor that
is 107× that of a low affinity site.
 The level of 10 repressor tetramers per cell ensures that the operator is
bound by repressor 96% of the time.
 Induction reduces the affinity for the operator to 104× that of lowaffinity sites, so that only 3% of operators are bound.
 Induction causes repressor to move from the operator to a low-affinity
site by direct displacement.
 These parameters could be changed by an increase or reduction in the
effective concentration of DNA in vivo.
 Fig. 12.23: compares the equilibrium constants for lac
repressor/operator binding with repressor/general DNA binding.
 Repressor binds ~107 times better to operator DNA than to any
random DNA sequence of the same length.
 Two features of the lac repressor-operator interaction: (1) When
inducer binds to the repressor, the affinity for the operator is
reduced by ~103 fold. Only 3% of operators would be bound under
these conditions; (2) Mutations that reduce the affinity of the
operator for the repressor by as little as 20× to 30× have sufficient
effect to be constitutive.
 Fig. 12.24: All, or almost all, of the remaining tetramers are bound
at random to other regions of DNA. There are likely to be very few
or no repressor tetramers free within the cell.
Figure 12.23. Lac repressor binds strongly and
specifically to its operator, but is released by inducer.
All equilibrium constants are in M–1.
Figure 12.24: Virtually
all the repressor in the cell
is bound to DNA.
12.19 Repression Can Occur at Multiple Loci
Key Concepts
 A repressor will act on all loci that have a copy of its target operator
sequence.
 The lac repressor acts only on the operator of the lacZYA cluster.
Some repressors, however, control dispersed structural gens by
binding at more than one operator.
 An example is the trp repressor, which controls 3 unlinked sets of
genes: (1) An operator at the cluster of structural genes trpEDBCA
controls coordinate synthesis of the enzymes that synthesize
tryptophan from chorismic acid; (2) An operator at another locus
controls the aroH gene, which codes for one of the three enzymes
that catalyze initial reaction in the common pathway of aromatic
amino acid biosynthesis; (3) The trpR regulator gene is repressed
by its own product, the trp repressor. (autogenous control)
- Autogenous control describes the action of a gene product that
either inhibits (negative autogenous control) or activates (positive
autogenous control) expression of the gene coding for it.
 A related 21 bp operator sequence is present at each of the three
loci at which the trp repressor acts (Fig. 12.25)
 Figure 12.26: summarizes the variety of relationships between
operators and promoters.
Figure 12.25. The trp repressor recognizes operators at three loci.
Conserved bases are shown in red. The location of the startpoint and
mRNA varies, as indicated by the white arrows.
Figure 12.26. Operators may lie at various
positions relative to the promoter.
12.20 Cyclic AMP Is an Effector That Activates CRP to Act at Many
Operons
Key Concepts
 CRP is an activator protein that binds to a target sequence at a
promoter.
 A dimer of CRP is activated by a single molecule of cyclic AMP.
 There are some promoters at which RNA polymerase cannot initiate
transcription without assistance from an ancillary protein. Such
proteins are positive regulators.
 One of the most widely acting activators is a protein called CRP
activator that controls the activity of a large set of operons in E.
coli. CRP is active only in the presence of cyclic AMP, which
behaves as a classic small-molecule inducer for positive control
(Fig. 12.27; upper right).
 Cyclic AMP is synthesized by the enzyme adenylate cyclase (Fig.
12.28).
 The level of cyclic AMP is inversely related to the level of glucose.
Fig. 12.29: shows that the glucose reduces CRP activity.
Figure 12.27. Control circuits
are versatile and can be
designed to allow positive or
negative control of induction
or repression.
Figure 12.28. Cyclic AMP has a single phosphate group
connected to both the 3’ and 5’ positions of the sugar ring.
Figure 12.29. By reducing the level of cyclic AMP, glucose
inhibits the transcription of operons that require CRP activity.
12.21 CRP Functions in Different Ways in Different Target
Operons
Key Concepts
 CRP introduces a 90° bend into DNA at its binding site.
 CRP-binding sites lie at highly variable locations relative to the
promoter.
 CRP interacts with RNA polymerase, but the details of the interaction
depend on the relative locations of the CRP-binding site and the
promoter.
 The CRP factor binds to DNA. The factor is a dimer of two
identical subunits of 22.5 kD, which can be activated by a single
molecule of cyclic AMP.
 A CRP monomer contains a DNA-binding region and a
transcription-activating region.
 Fig. 12.30: consensus sequence for CRP.
 Mutations preventing CRP action usually are located within the
well-conserved pentamer TGTGA, which appears to be the
essential element in recognition.
 CRP introduces a large bend when it binds DNA. The bend is quite
severe, >90° (Fig. 12.31). There is, therefore, a dramatic change in
the organization of the DNA double helix when CRP protein binds.
 Fig. 12.32: CRP-binding sites are close to the promoter.
Figure 12.30. The consensus sequence for CRP contains the well
conserved pentamer TGTGA and (sometimes) an inversion of this
sequence (TCANA).
Figure 12.31. CRP bends DNA >90°
around the center of symmetry.
Figure 12.32. The CRP protein can bind at
different sites relative to RNA polymerase.
12.22 Translation Can Be Regulated
Key Concepts
 A repressor protein can regulate translation by preventing a ribosome
from binding to an initiation codon.
 Accessibility of initiation codons in a polycistronic mRNA can be
controlled by changes in the structure of the mRNA that occur as the
result of translation.
 Translational control is a notable feature of operons coding for
components of the protein synthetic apparatus.
 A similar type of mechanism: Repressor function is provided by a
protein that binds to a target region on mRNA to prevent ribosomes
from recognizing the initiation region.
 Fig. 12.33: A regulator may block ribosome binding.
 Some examples of translational repressors and their targets are
summarized in Fig. 12.34.
 Another form of translational control occurs when translation of
one cistron requires changes in secondary structure that depend on
translation of a preceding cistron (Fig. 12.35).
Figure 12.33. A regulator protein may block translation by
binding to a site on mRNA that overlaps the ribosomebinding site at the initiation codon.
Figure 12.34. Proteins that bind to sequences within the initiation regions
of mRNAs may function as translational repressors.
Figure 12.35. Secondary structure can
control initiation. Only one initiation site
is available in the RNA phage, but
translation of the first cistron changes the
conformation of the RNA so that other
initiation site(s) become available.
12.23 r-Protein Synthesis Is Controlled by Autogenous Regulation
Key Concepts
 Translation of an r-protein operon can be controlled by a product of the
operon that binds to a site on the polycistronic mRNA.
 About seventy or so proteins constitute the apparatus for bacterial
gene expression. The ribosomal proteins (r-proteins) are the major
component.
 Fig. 12.36: The organization of six operons is summarized.
 Each operon codes for a variety of functions. The str operon has
genes for small subunit ribosomal proteins as well as for EF-Tu and
EF-G.
 All except one of the ribosomal proteins are need in equimolar
amounts, which must be coordinated with the level of rRNA.
 Autogenous regulation occurs whenever a protein (or RNA)
regulates its own production. Accumulation of the protein inhibits
further synthesis of itself and of some other gene products.
 Each of the regulators is a ribosomal protein that binds directly to
rRNA. Its effect on translation is a result of its ability also to bind
to its own mRNA.
 Fig. 12.37: rRNA controls the level of free r-proteins.
Figure 12.36. Genes for ribosomal proteins, protein synthesis factors, and RNA
polymerase subunits are interspersed in a small number of operons that are
autonomously regulated. The regulator is name in red; the proteins that are
regulated are shaded in pink.
Figure 12.37. Translation of the r-protein operons is
autogenously controlled and responds to the level of rRNA.
12.24 Phage T4 p32 Is Controlled by an Autogenous Circuit
Key Concepts
 p32 binds to its own mRNA to prevent initiation of translation.
 The protein p32 of phage T4 plays a central role in genetic
recombination, DNA repair, and replication, in which its function is
exercised by virtue of its ability to bind to single-stranded DNA.
 Fig. 12.38: presents a model for the gene 32 control circuit.
 Fig. 12.39: shows that at concentrations below 10-6 M, p32 binds to
single-stranded DNA. At concentrations >10-6 M, it binds to gene
32 mRNA, implying that the level of p32 should be autoregulated
to be <10-6 M.
Figure 12.38. Excess gene 32protein (p32) binds to its own mRNA
to prevent ribosomes from initiating translation.
Figure 12.39. Gene 32 protein binds to various substrates with different
affinities, in the order single-stranded DNA, its own mRNA, and other
mRNAs. Binding to its own mRNA prevents the level of p32 from rising >106 M.
12.25 Autogenous Regulation Is Often Used to Control
Synthesis of Macromolecular Assemblies
Key Concepts
 The precursor to microtubules, free tubulin protein, inhibits translation
of tubulin mRNA.
 Autogenous regulation is a common type of control among proteins
that are incorporated into macromolecular assemblies.
 Eukaryotic cells have a common system in which autogenous
regulation of this type occurs.
 Tubulin is the monomer from which microtubules, a major
filamentous system of all eukaryotic cells, are synthesized. The
production of tubulin mRNA is controlled by the free tubulin pool.
 Fig. 12.40: two models
Figure 12.40. Tubulin is assembled
into microtubules when it is
synthesized. Accumulation of excess
free tubulin induces instability in the
tubulin mRNA by acting at a site at
the start of the reading frame in
mRNA or at the corresponding
position in the nascent protein.