MANE 4240 & CIVL 4240 Introduction to Finite Elements
Download
Report
Transcript MANE 4240 & CIVL 4240 Introduction to Finite Elements
MANE 4240 & CIVL 4240
Introduction to Finite Elements
Prof. Suvranu De
Higher order elements
Reading assignment:
Lecture notes
Summary:
• Properties of shape functions
• Higher order elements in 1D
• Higher order triangular elements (using area coordinates)
• Higher order rectangular elements
Lagrange family
Serendipity family
Recall that the finite element shape functions need to satisfy the
following properties
1. Kronecker delta property
1 at nodei
Ni
0 at all other nodes
Inside an element
u N1u1 N 2 u 2 ...
At node 1, N1=1, N2=N3=…=0, hence
u node 1 u1
Facilitates the imposition of boundary conditions
2. Polynomial completeness
If u 1 2 x 3 y
Then
N
i
1
i
N x
i
i
x
i
N
i
i
yi y
Higher order elements in 1D
2-noded (linear) element:
x1
x2
x x2
N1
x1 x 2
x
x x1
N2
x 2 x1
2
1
In “local” coordinate system (shifted to center of element)
x
1
a
a
2
ax
2a
ax
N2
2a
N1
3-noded (quadratic) element:
x1 x3
x2
x
1
3
2
x x2 x x3
N1
x1 x2 x1 x3
x x1 x x3
N2
x2 x1 x2 x3
x x1 x x2
N3
x3 x1 x3 x2
In “local” coordinate system (shifted to center of element)
x
1
3
a a
2
x1 a ; x2 0 ; x3 a
x a x
2a 2
xa x
N2
2a 2
a2 x2
N3
a2
N1
x x 2 x x3 x x 4
N1
x1 x 2 x1 x3 x1 x 4
4-noded (cubic) element:
x x1 x x3 x x 4
N2
x1 x3 x4 x2
x 2 x1 x 2 x3 x 2 x 4
x
x x1 x x 2 x x 4
N
3
1 3 4 2
x3 x1 x3 x 2 x3 x 4
x x1 x x 2 x x3
N4
x 4 x1 x 4 x 2 x 4 x3
In “local” coordinate system (shifted to center of element)
2a/3 2a/3 2a/3
1
a
3
4
a
2
9
N1
( x a)(x a / 3)(x a / 3)
3
16a
x
9
N2
( x a)(x a / 3)(x a / 3)
3
16a
27
N3
(a x)(a / 3 x)(a x)
3
16a
27
N4
( x a)(x a / 3)(x a / 3)
3
16a
Polynomial completeness
Convergence
rate (displacement)
2 node; k=1; p=2
1
x
x2
x3
3 node; k=2; p=3
4 node; k=3; p=4
x4
Recall that the convergence in displacements
u uh 0 Ch p ; p k 1
k=order of complete polynomial
Triangular elements
Area coordinates (L1, L2, L3)
1
Total area of the triangle A=A1+A2+A3
P A2
A3
A1
y
At any point P(x,y) inside
the triangle, we define
3
2
x
A1
L1
A
A2
L2
A
A3
L3
A
Note: Only 2 of the three area coordinates are independent, since
L1+L2+L3=1
ai bi x ci y
Li
2A
1 x 1
1
A area of triangle det 1 x 2
2
1 x 3
y1
y 2
y 3
a1 x 2 y 3 x3 y 2
b1 y 2 y 3
c1 x3 x 2
a 2 x3 y1 x1 y 3
a3 x1 y 2 x 2 y1
b2 y 3 y1
b3 y1 y 2
c 2 x1 x3
c3 x 2 x1
Check that
L1 L2 L3 1
L1 x1 L2 x2 L3 x3 x
L1 y1 L2 y2 L3 y3 y
1
L1= constant
P’
P
y
A1
3
2
x
Lines parallel to the base of the triangle are lines of constant ‘L’
L1= 1
1
P
y
L1= 0
A1
3
2
L3= 0
x L =1
2
L3= 1
L2= 0
We will develop the shape functions of triangular elements in
terms of the area coordinates
For a 3-noded triangle
N1 L1
N 2 L2
N 3 L3
For a 6-noded triangle
L2= 0
L1= 1
1
L2= 1/2
L2= 1
L1= 1/2
6
y
4
L1= 0
3
2
L3= 0
5
x
L3= 1/2
L3= 1
How to write down the expression for N1?
Realize the N1 must be zero along edge 2-3 (i.e., L1=0) and at
nodes 4&6 (which lie on L1=1/2)
N1 cL1 0L1 1 / 2
Determine the constant ‘c’ from the condition that N1=1 at
node 1 (i.e., L1=1)
N1 (at L1 1) c11 1 / 2 1
c2
N1 2 L1 L1 1 / 2
N1 2 L1 ( L1 1 / 2)
N 2 2 L2 ( L2 1 / 2)
N 3 2 L3 ( L3 1 / 2)
N 4 4 L1 L2
N 5 4 L3 L2
N 6 4 L3 L1
For a 10-noded triangle
L1= 1
L2= 0
1
L2= 1/3
9
4
L2= 2/3
L2= 1
L1= 2/3
y
10
5
2
6
L1= 1/3
8
L1= 0
7
x
L3= 0 L3= 1/3 L3= 2/3 L3= 1
3
N1
N2
N3
N4
N5
N6
N7
9
L1 ( L1 1 / 3)(L1 2 / 3)
2
9
L2 ( L2 1 / 3)(L2 2 / 3)
2
9
L3 ( L3 1 / 3)(L3 2 / 3)
2
27
L1 L2 ( L1 1 / 3)
2
27
L1 L2 ( L2 1 / 3)
2
27
L2 L3 ( L2 1 / 3)
2
27
L2 L3 ( L3 1 / 3)
2
:
N 10 2 7L1 L2 L3
NOTES:
1. Polynomial completeness
Convergence
rate (displacement)
3 node; k=1; p=2
1
x
x2
x3 x2 y
y
xy
y2
xy 2 y 3
6 node; k=2; p=3
10 node; k=3; p=4
2. Integration on triangular domain
1.
A
1
2.
l1-2
L1 L2 L3 dA 2 A
k
1 2 edge
y
3
2
x
m
n
L1 L2 dS l12
k
m
k! m! n!
(2 k m n)!
k! m!
(1 k m)!
3. Computation of derivatives of shape functions: use chain rule
e.g.,
N i N i L1 N i L2 N i L3
x
L1 x L2 x L3 x
But
L1
b1
;
x 2 A
b3
L2
b2 L3
;
x
2 A x
2A
e.g., for the 6-noded triangle
N 4 4 L1 L2
N 4
b
b
4 L1 2 4 L2 1
x
2A
2A
Rectangular elements
Lagrange family
Serendipity family
Lagrange family
4-noded rectangle
y
2
1
a
a
b
In local coordinate system
N1
x
b
3
4
N2
N3
N4
( a x )(b
4a b
( a x )(b
4a b
( a x )(b
4a b
( a x )(b
4a b
y)
y)
y)
y)
9-noded quadratic
y 5
a
a
2
b
6
b
3
9
7
Corner nodes
x(a x) y(b y )
x(a x) y(b y)
N1
N
2
2
2
2a 2 2b 2
2a 2b
x(a x) y(b y)
x(a x) y(b y)
N 3
N
4
2
2
2a 2 2b 2
2
a
2
b
1
8
4
x
Midside nodes
2
2
a 2 x 2 y (b y )
x(a x) b y
N5
N 6
2
2
a
2
b
2a 2 b 2
2
2
a 2 x 2 y (b y )
x(a x) b y
N7
N8
2
2
2
2
a
2
b
2a b
Center node
a2 x2 b2 y 2
N9
2
2
a b
NOTES:
1. Polynomial completeness
1
x
y
x2
x3
x4
xy
x2 y
x3 y
y2
Convergence
rate (displacement)
4 node; p=2
9 node; p=3
xy 2 y 3
x 2 y 2 xy 3 y 4
x 5 x 4 y x 3 y 2 x 2 y 3 xy 4 y 5
Lagrange shape functions contain higher order terms but miss
out lower order terms
Serendipity family
4-noded same as Lagrange
8-noded rectangle: how to generate the shape functions?
First generate the shape functions of the
y 5
midside nodes as appropriate products of
2
1
a
a
1D shape functions, e.g.,
b
8
2
2
2
2
6
x N a x (b y) ; N (a x) b y
5
8
2
2a b 2
b
a
2
b
7
4 Then go to the corner nodes. At each corner
3
node, first assume a bilinear shape function as in
a 4-noded element and then modify:
ˆ ( a x )(b y )
N
1
“bilinear” shape fn at node 1:
4ab
N N
actual shape fn at node 1:
N1 Nˆ 1 5 8
2
2
8-noded rectangle
y 5
a
a
2
b
1
8
6
b
3
Midside nodes
7
x
2
2
a 2 x 2 (b y )
(a x) b y
N5
N6
2
b 2
2
b
2
a
a
2
2
a 2 x 2 (b y )
(a x) b y
N7
N8
2
2
2a b
a
2b
4
Corner nodes
(a x)(b y ) N 5 N 8
(a x)(b y ) N 5 N 6
N1
N2
4ab
2
2
4ab
2
2
(a x)(b y ) N6 N 7
(a x)(b y ) N8 N 7
N3
N4
4ab
2
2
4ab
2
2
NOTES:
1. Polynomial completeness
1
x
y
x2
x3
x4
x
5
x2 y
x3 y
4
3
x y x y
y2
xy
8 node; p=3
xy 2 y 3
12 node; p=4
x 2 y 2 xy 3 y 4
2
2
x y
3
Convergence
rate (displacement)
4 node; p=2
xy
4
y
5
16 node; p=4
More even distribution of polynomial terms than Lagrange
shape functions but ‘p’ cannot exceed 4!