Transcript Document
DAYCENT Model Overview, Testing and Application to Agroecosystems S.J. DEL GROSSO, W.J. PARTON, D.S. OJIMA, A.R. MOSIER and C. KEOUGH DAYCENT MODEL S=soil type V=veg type L=land use CH4 Uptake N GAS 0-1 cm 1-4 cm 4-15 cm 15-30 cm etc. S,Rh V NPP H2Osoil Tsoil CO2 PLANT COMPONENTS LEAVES NO3- 0-1 cm 1-4 cm 4-15 cm 15-30 cm etc. NH4+ 0-1 cm 1-4 cm 0-15 cm 4-15 cm 15-30 cm etc. FINE ROOTS PPT,V,L S C:N BRANCHES LARGE WOOD SOM LARGE ROOTS DEAD PLANT Decomp MATERIAL Rh S STRUCTURAL C:N METABOLIC CO2 C:N Rh ACTIVE 0.5-1 yr SLOW 10-50 yr PASSIVE 1000-5000 yr Parton et al. 1998 Kelly et al. 2000 Del Grosso et al. 2001 S S CO2 Improved NPP Submodel Potential Growth (CO2,T,H2O) Nutrients Shading Crop H2O GRAIN C,N,P,S SHOOT C,N,P,S Tillage Temp H2O NPP Phenology Nutrient/H2O stress SURFACE LITTER ROOT C,N,P,S Temp H2O SOIL LITTER PG = Gpot*F(light)*F(LAI)*F(Temp)*F(H2O) Del Grosso et al. in prep. WATER FLOW SUBMODEL ATMOS PRECIP ATMOS Tair Evap PET ROOT PET PET SNOW BIOMASS INTERCEPTION PET Sublimation Tair Melting Infiltration KSAT KSAT H2O 0-1 cm KSAT hpot H2O 1-4 cm KSAT OUTFLOW hpot H2O 4-15 cm KSAT hpot H2O 15-30 cm KSAT hpot KSAT H2O 145-160 cm Parton et al. 2001 Parton et al. 2001 coarse fine Del Grosso et al. 2000 Recent Model Improvements •Variable effective plant rooting depth •PET = F(Lat, DOY, Tavg, Tmax – Tmin) •Weekly scheduling of management events •Germination = F(Tsurface) •Harvest/Senescence = F(GDD, Tsurface) •Canopy absorption of NOx emitted from soil 400 KBS corn/soy/wheat conv till 350 gC m-2 yr-1 300 grain sim grain obs 250 200 150 100 50 0 1989 1991 1993 16 1995 1997 1999 N grain sim 14 N grain obs -1 8 gN m yr 10 -2 12 6 4 2 0 1989 1991 1993 1995 1997 1999 KBS DF 15 sim obs -1 N2O gN ha d -1 20 10 5 0 50 KBS Plow High Fert -1 N2O gN ha d -1 40 30 sim obs 20 10 0 1/1/96 7/1/96 12/30/96 6/30/97 12/29/97 350 Corn - CT Irr Fert 300 gN ha-1 d-1 250 N2O sim N2O obs 200 150 100 50 0 03/15/02 04/14/02 05/14/02 06/13/02 07/13/02 08/12/02 09/11/02 120 Corn - NT Irr Fert gN ha-1 d-1 100 N2O sim 80 N2O obs 60 40 20 0 03/15/02 04/14/02 05/14/02 06/13/02 07/13/02 08/12/02 09/11/02 N2O gN/ha/d 1500 Soy-Fallow Fert 1000 obs N2O sim N2O 500 0 0 25 50 days after fert 75 100 IPCC Emission Factor Calculations Direct N2O emissions Ncult = 0.1 gN m-2 yr-1 Nom = Nsludge + Nmanure N2Odirect = 1.25%*(Nstuble + Nfert + Nom) + Ncult Indirect N2O emissions NH3 + NOx = 0.1Nfert Nleach = 0.3Nfert N2Oindirect = 0.01(NH3 + NOx) + 0.025Nleach mean N2O 1 gN m-2 yr-1 observed 0.8 DAYCENT 0.6 Emission Factor 0.4 0.2 w llo so y/ fa co rn TN co rn CO CO IA 25 mean N leached 20 gN m-2 yr-1 ba rle y he at CO w co rn O tta wa wh ea t NE KB S KB S al fa ro ta t io n lfa 0 obs 15 DC 10 EF 5 n po ta to no co rn hi g rn co co r N N h N gh hi ea n oy b n/ s co r oy b co co rn /s rn /s oy b ea n ea n m lo ed w N N 0 500 mean grain/hay yields gC m-2 yr-1 400 obs 300 DC 200 100 0 KBS alfalfa KBS rotation NE wheat Ottawa corn corn/soy corn corn/potato a) 2 modeled N2O gN m-2 yr-1 1.5 y = 0.76x + 0.05 R2 = 0.72 EF DAYCENT 1 Linear (EF) Linear (DAYCENT) y = 0.34x + 0.26 R2 = 0.63 0.5 0 0 0.5 1 1.5 -2 2 -1 observed N2O gN m yr modeled NO3 leached gN m -2 yr-1 b) 25 y = 0.97x - 0.13 20 R2 = 0.96 EF 15 DAYCENT Linear (EF) Linear (DAYCENT) 10 y = 0.47x + 0.95 2 R = 0.74 5 0 0 5 10 15 20 -2 -1 observed NO3 leached gN m yr Fig4 25 National GHG Inventory •Bruce McCarl’s 63 regions •EPIC soils and daily climate data •Simulated dominant rotations for each region •Rain fed and irrigated •N fertilizer but no manure additions •Converted model output in gN2O-N m-2 to regional totals for the dominant crop rotations using state level planted acres reported by NASS 25 Major Crop Areas corn 20 millin ha soy hay 15 wheat cotton 10 5 0 CEN NE NW SE SW Regional Level Validations State Level Grain/Hay Yield Validations 600 sim gC m -2 yr -1 500 400 300 200 R2 = 0.65 100 0 0 100 100 200 300 400 obs gC m-2 yr-1 500 600 Grain and Hay Yields 90 80 yield obs annual Tg C 70 yield sim 60 50 40 30 20 10 0 CEN NE NW SE SW Simulated Regional N2O Emissions 25 Direct N2O annual Tg C 20 15 EF DC 10 5 0 CEN NE 9 NW SE SW Indirect N2O 8 annual Tg C 7 6 EF 5 DC 4 3 2 1 0 CEN NE 30 NW SE SW Total N2O annual Tg C 25 20 EF 15 DC 10 5 0 CEN NE NW SE SW N2O by Crop 16 Direct N2O 14 12 annual Tg C EF 10 DC 8 6 4 2 0 corn 5 cotton alfalfa soy wheat Indirect N2O 4 annual Tg C EF 3 DC 2 1 0 corn 18 cotton alfalfa soy wheat Total N2O annual Tg C 15 EF 12 DC 9 6 3 0 corn cotton alfalfa soy wheat National N2O and GHGnet 60 N2 O annual Tg CO2-C 50 40 EF 30 DC 20 10 0 direct Indirect 20 total GHGnet CO2 CH4 annual Tg CO2-C 15 N2O Nfert GHGnet 10 5 0 CEN NE NW SE SW Nfert GHGnet -5 GHGnet 40 35 annual Tg CO2-C 30 25 20 15 10 5 0 -5 -10 CO2 CH4 N2O Area normalized N2O 25 N2O Direct annual gC m -2 20 15 10 5 0 annual gC m -2 CEN NE NW 20 N2O indirect 18 16 14 12 recent modern cropping SE SW SE SW SE SW pre 1940 management native vegetation 10 8 6 4 2 0 CEN NE 40 NW N2O total 35 annual gC m-2 30 25 20 15 10 5 0 CEN NE NW Area normalized GHGnet GHGnet 40 annual gC m-2 30 20 recent modern cropping pre 1940 management native vegetation 10 0 -10 -20 CO2 CH4 N2O Nfert GHGnet EPA vs. DAYCENT N Inputs 12 N inputs Tg N yr -1 10 8 EPA 6 DC 4 2 0 N fert manure sludge N fix resudue N 5000 Major Crop Areas wheat hay 4000 corn soy cotton ha 3000 2000 1000 0 CO KS 40 MT ND NE NM OK SD TX WY Mean GHG fluxes per unit area -1 10 g CO2-C m yr 20 -2 30 BAU IM 0 -10 -20 -30 -40 10000 del C soil N2O dir N2O ind Mean GHG fluxes CH4 Cnet ton CO2-C yr -1 5000 0 -5000 BAU IM -10000 -15000 -20000 del C soil N2O dir N2O ind CH4 Cnet gCO2-C m-2 yr-1 Mean GHG fluxes per unit area 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 wheat/fallow wheat/corn/fallow del C soil N2O dir N2O ind CH4 Cnet Mean GHG fluxes per unit area 60 40 gCO2-C m-2 yr-1 20 0 -20 wheat continuous -40 corn/soy/wheat -60 -80 -100 del C soil N2O dir N2O ind CH4 Cnet Mean GHG fluxes per unit area 80 -2 gCO2-C m yr -1 60 40 20 0 irr corn ct -20 irr corn nt -40 -60 del C soil N2O dir N2O ind CH4 Cnet