Transcript Outline
Simulation and Understanding of Metamaterials Th. Koschny, J. Zhou, C. M. Soukoulis Ames Laboratory and Department of Physics, Iowa State University. Th. Koschny, MURI NIMs Review May 2007, Purdue Outline 1. 2. 3. 4. 5. Retrieval Breaking of Scaling Cut-wire pairs Diamagnetic response of SRR Anisotropic & Chiral metamaterials Homogeneous Effective Medium Retrieval e ik z, n ik re d PRB, 65, 195104 (2002), Opt. Exp. 11, 649 (2003). te ik Effective medium: Periodicity Artifacts Resonance/Anti-resonance “coupling” “cut-off” deformations negative imaginary part Energy loss is positive for causal branch Im(n) > 0 Re(z) > 0 ν Q() | E |2 | H |2 2 | H |2 n() z() Curves are for our 200THz SRR, 315nm x 330nm x 185nm unit cell PRE, 68, 065602(R) (2003), PRL 95, 203901 (2005). Periodic Effective medium description anti-resonance pseudo-resonance antipseudoresonance “cut-off” & shift “cut-off” at Brillouin zone edge intermediate band gap generic SRR PRB 71, 245105 (2005), PRE 71, 036617 (2005). Dashed lines: Underlying physical resonances Solid lines: Effective response due to periodicity Outline 1. 2. 3. 4. 5. Retrieval Breaking of Scaling Cut-wire pairs Diamagnetic response of SRR Anisotropic & Chiral metamaterials Breaking of Scaling Going to THz frequencies Idea: geometric scaling linear scaling Metals are near-perfect conductors, the effective LC-resonator C 0 rel A d 0 R2 l 8R L 0 R log 2 r0 densely stacked rings sparse rings depends on geometry only lenght S length time S time Scale: Such that speed of light invariant and S 0 C S L S m 1 1 S LC Upper frequency limit of the SRRs? 55 nm Theory: PRL 95, 223902 (2005), Experiment: Opt. Lett. 31, 1259-1261 (2006). Why saturation of ωm? m 1 LmC 1 Em Lm I 2 2 Lm a m 1/ a Ca (a: unit cell size) Charge-carriers have non-zero mass !! Key point: Kinetic energy of the electrons becomes comparable to magnetic energy in small scale structures 1 Ee (neV )me ve2 2 1 2 Le I 2 V: wire effective volume S: wire effective cross-section ne: e- number density I ve S e ne me V 1 Le ~ 2 2 ne e S a 1 1 m ( Lm Le )C a 2 const. Effective permeability Can be obtained by effective medium retrieval procedure from transmission & reflection or directly via the magnetic moment of the SRR M 1 1 , M H V r j 2 dV , 1 j i 1 D ( ) metal Limits of simple LC picture ~ /2 ~ 3 / 2 ~ 5 / 2 “magnetic” modes Magnetic coupling or circular current Electric coupling (anti-symmetric) “electric” modes Electric coupling linear current (symmetric) 2 ~ / 2 2 ~ 2 ~ 2 current density (arrows) & charge density (color) Outline 1. 2. 3. 4. 5. Retrieval Breaking of Scaling Cut-wire pairs Diamagnetic response of SRR Anisotropic & Chiral metamaterials Electric resonance Electric mode of coupled electric resonances Magnetic mode of coupled electric resonances Periodic Short-wire Pair arrays With periodicity: Lagarkov & Sarychev, PRB 53, 6318 (1996); Panina et al., PRB 66, 155411 (2002); Shalaev et al., Opt. Lett. 30, 3356 (2005). Opt. Lett. 31, 3620 (2006), Opt. Lett. 30, 3198 (2005). 6 Permeability (a) Imaginary 2 2 0 -2 0 0 Permittivity Refractive Index 4 4 Real -2 14 15 16 17 18 Frequency (GHz) (b) -2 -4 -6 APL 88, 221103 (2006) 14 L L b b 2 ay 2 ay (a) (a) Ce Ce 1 1 ax ax Cm C Lm Lmm Lm L m Cm Cm (c) magnetic(c) resonance 2 2 C C (b) (b) Cm Cm 15.0 Ce Ce 14.5 a 14.0 13.5 13.0 fm b 12.5 12.0 1.01 fe 1.02 1.03 ay/l 1.04 18 The cross-over of the magnetic and electric resonance frequencies is difficult to achieve! Lm Cm Ce e Lm Cm 1 1 L C e e m 2 2 (d) electric(d) resonance Opt. Lett. 31, 3620 (2006) 1 2 Cm Cm Le Le Le Le Ce Ce Ce Ce 1 m LeCe e 1 1 Permittivity,Permeability l l Frequency (GHz) 1 1 15 16 17 Frequency (GHz) < 0 and < 0 4 a b 2 0 -2 -4 -6 -8 12 1/10 13 14 1/10 15 16 10 11 12 Frequency (GHz) 13 14 15 “Fishnet” structure With periodicity: Realization n<0 at 1.5m, Karlsruhe & ISU Zhang et al., PRL 95, 137404 (2005). Opt. Lett. 31, 1800 (2006). A Brief History of Left-handed Metamaterials Since the first demonstration of an artificial LHM in 2000, there has been rapid development of metamaterials over a broad range of frequencies. 1000 (11) (10) (7) (8) 100 (9) (12) (14) n<0 for 780 nm (ISU & Karlsruhe) 1 µm (13) Opt. Lett. 32, 53 (2007) 10 µm 10 (6) 200 nm 1 100µm 500 nm (5) Wavelength Magnetic resonance frequency (THz) 100 nm Science 315, 47 (2007) n<0 for 1.5 µm (ISU & Karlsruhe) Science 312, 892 (2006) 1 mm 0.1 3 mm 0.01 1 cm (2) (3) 200 nm (4) µ<0 for 6 THz (ISU & Crete) Opt. Lett. 30, 1348 (2005) (1) 10 cm 2000 2001 2002 2003 2004 2005 2006 2007 Year Solid symbol: n<0 Open symbol: µ<0 n<0 for 4 GHz (ISU & Bilkent ) Opt. Lett. 29, 2623 (2004) Iowa State University involved in designing, fabrication and testing of LHMs from GHz to optical frequencies [4,6,7,10,11,13,14]. Outline 1. 2. 3. 4. 5. Retrieval Breaking of Scaling Cut-wire pairs Diamagnetic response of SRR Anisotropic & Chiral metamaterials Magnetic moment around resonance according to F 2 ( ) 1 2 m 2 i μ(ω) should return to unity below and above the resonance? Two types of diamagnetic response below resonance B eliminated from area of ring metal above resonance B eliminated from all enclosed area at resonance B0 B0 Diamagnetic & Resonant currents we describe metal by Drude model permittivity then current density is available as: L=10μm f=300GHz below resonance Skin-depth 1 j ( ) i 1 D( ) ( ) metal L=10μm f=3.2THz at resonance (note: scale is 10x larger) Metals at THz frequencies Drude model permittivity qualitatively good description for Au, Ag, Cu up to optical frequencies Drude model parameters from Experimental data: lossy negative “dielectric” Im Re good conductor Johnson & Christy, PRB 6, 4370 (1972); El-Kady et al., PRB 62, 15299 (2000). 1/ 2 c lS for f < 1THz 1/ 2 2 1 lS , q 2 Im q c Skin-depth saturates at optical frequencies ! Silver Ratio Skin-depth/structure size becomes larger !! Copper first ~ω1/2 then ~o(1) Gold Aluminum Diamagnetic response of open and closed SRR ring dependence on the ring width L=10μm f~3THz L=100nm f~70THz Outline 1. 2. 3. 4. 5. Retrieval Breaking of Scaling Cut-wire pairs Diamagnetic response of SRR Anisotropic & Chiral metamaterials Anisotropic Arrays of Continuous or Short Nanowires Continuous wires: radius=30nm, Drude-model Gold, (130nm)2 unit cell: F=16% 4 1.0 E wires Re() Im() Re() Im() Permittivity,Permeability Permittivity,Permeability 1.5 0.5 p 0.0 -0.5 -1.0 500 550 600 650 700 Frequency (THz) 750 800 Re() Im() Re() Im() 3 H wires 2 Beware: Periodicity artifacts 1 0 500 550 600 650 700 Frequency (THz) 750 800 Short wires: radius=30nm, length=300nm, Drude-model Gold: F=11% 4 Re() Im() Re() Im() 40 30 20 10 0 p -10 200 250 300 350 400 450 500 550 600 650 Frequency (THz) Permittivity,Permeability Permittivity,Permeability 50 2 0 -2 p -4 Re() Im() Re() Im() -6 -8 -10 200 250 300 350 400 450 500 550 600 650 Frequency (THz) left-handed negative refraction 1,(1, 1) anisotropic negative refraction 1,(1, 0.5) Note that the hyperbolic dispersion supports propagating modes for arbitrarily high parallel momenta (which would be evanescent in air). 1,(1, 1) Chiral Metamaterials: large gyrotropy & negative index Constitutive relations 1310 nm 60 D E j 0 0 H 980 nm B H j 0 0 E 40 660 nm Transmission (%) 80 20 0.6 0.8 1.0 1.2 1.4 Wavelength (m) 50nm Al 50nm dielectric 1.6 Eigenmodes in chiral medium: right circularly polarized (RCP, +) and left circularly polarized (LCP, -), whose wavenumbers and effective indices are: • Bilayer chiral metamaterials exhibits strong gyrotropy at optical frequencies. k k0 (n ), n k / k0 (n ) If the chirality parameter is very large, n • Specific rotatory power: Wavelength (nm) Optical activity (°/mm) then 660, 980, 1310 600, 670, 2500 V. A. Fedotov, CLEO Europe 2007 k 0, n 0, the refractive index for the LCP eigenmode becomes negative. Circular Dichroism: Experiment & Simulation Svirko-Zheludev-Osipov Metamaterial (APL 78, 498 (2001)) Experimental results LCP Simulations, J. Dong et al. A 5.25 GHz B 6.50 GHz Transmission (dB) RCP A 5.25 GHz B 6.58 GHz Frequency (GHz) Δ (dB) s 2 δ (degree) | t | | t | s s arg(t ) arg(t ) s 2 Frequency (GHz) A.V. Rogacheva, et al., PRL 97, 177401 (2006) Frequency (GHz) Thanks for your attention