Transcript Document
Substitution Method Integration When one function is not the derivative of the other e.g. ò x(4x -1) 6 dx u = 4 x -1 x is not the derivative of (4x -1) and u+1 Rearranging x = x is a4 variable 1 Differentiating dx = du 4 Let Substitute æ u+ 1ö 6 1 1 ò çè 4 ÷øu 4 du = 16 ò (u 7 + u )du 6 1 Integrate 16 8 7 1 u u 7 6 ò (u + u )du = 16 ( 8 + 7 ) + c Substitute ò u= 4x -1 8 7 1 (4x -1) (4 x -1) x(4x -1) 6 dx = ( + )+c 16 8 7 ò 8 7 (4 x -1) (4x -1) x(4x -1) 6 dx = + )+c 128 112 Example 2 ò x -1 dx x+ 4 xLet - 1 is not the u derivative = x + 4of x +4 and it contains a variable x=u -4 2 Rearranging Differentiating Substitute ò dx = 2u du u2 - 4 -1 2 ´ 2u du = 2 (u - 5)du u ò Integrating and substituting back in for u 3 u 2 ò (u - 5)du = 2( - 5u) + c 3 3 1 2 = (x + 4) 2 -10(x + 4) 2 + c 3 2 Delta Exercise 12.8 The definite integral Example 1 2x ò 2 1+ x2 dx 4 As 2x is the derivative, use inverse chain rule to integrate [ 2x 2 dx = ln1+ x ò 2 1+ x2 4 Substitute x = 4 ] 4 2 = ln17 - ln5 = 1.224 Substitute x = 2 Example4x2divided by 2x = 2 Solving x = 1/2 ò 2 1 4x + 3 dx 2x -1 Substitute x = 1/2 into 4x + 3 to get 5 Divide the top by the bottom ò 2 1 4x + 3 dx = 2x -1 5 ò1 (2 + 2x -1)dx 2 é 2 ln 2x -1 ù 5 5ln 3 5ln1 ò1 (2 + 2x -1)dx = êë2x + 5 2 úû = (4 + 2 ) - (2 + 2 ) 1 2 = 4.747 Example 3 ò 3 0 x 1+ x dx Use substitution Let u = 1+ x Rearrange x = u2 -1 Differentiating ò When x = 3, When x = 0, u =2 u =1 dx = 2u du Substituting 3 0 4 2 (u -1)u´ 2udu = 2 (u u du ò1 ò 1 2 5 3 é2u 2u ù 2 4 2 2 ò (u - u du = ê = 7.733 ú 1 3 û1 ë 5 x 1+ xdx = 2 2 2 Delta Exercise 12.9 Areas under curves To find the area under the curve between a and b… …we could break the area up into rectangular sections. This would overestimate the area. …or we could break the area up like this which would underestimate the area. The more sections we divide the area up into, the more accurate our answer would be. If each of our sections was infinitely narrow, we would have the area of each section as Area = y ´ ¶x = y ´ dx y The total area would be the sum of all these areas between a and b. ò y dx is the sum all the areas of infinitely narrow width, dx and height, y. ò b a y dx = area under the curve between a and b As the value of dx decreases, the area of the rectangle approaches y x dx y 0 dx The area of this triangle is 3 units squared 2 The equation of the line is y = x 3 2 If we sum all rectangles y 0 dx 3 é1 2ù 2 ò 0 y dx = ò 0 3 x dx = êë 3 x úû = 3 - 0 = 3 0 3 3 3 The area of this triangle is 3 units squared 2 The equation of the line is y = - x 3 0 dx If we sum all rectangles 3 y The area is 3 but the integral is -3 2 é 1 2ù 2 ò 0 y dx = ò 0 - 3 x dx = êë- 3 x úû = -3 - 0 = -3 0 3 3 3 http://rowdy.mscd.edu/~talmanl/ MathAnim.html 2011 Level 2 2011 Level 2 ò (x 2 -1 3 - 3x + 4 ) dx 2 éx ù 3 = ê - x + 4xú = 6.75 ë4 û-1 4 2 2010 Level 2 2010 Level 2 ò 2 0 3 2 x + 2x - 8x) dx ( é x 2x ù 2 =ê + - 4x ú = -6.6 3 ë4 û0 4 3 2 • Area cannot be negative • Area = 6.67 units2 Combination Integral is positive -6 -1 Integral is negative 8 To find the area under the curve, we must integrate between -6 and -1 and between 8 and -1 separately and add the positive values together. -6 -1 8 Area = ò -1 f (x) + -6 ò-6 (x - x - 50x - 48)dx + -1 3 2 ò 8 f (x) -1 3 2 (x x - 50x - 48)dx ò-1 8 2011 Level 2 2011 Level 2 é x3 ù m+2 2 ò m x dx = êë 3 úû m m+2 1 1 3 3 = ( m+ 2 ) - m 3 3 8 1 2 = 2m + 4m+ = 5 3 6 m = 0.5, m ¹ -2.5 2010 Question 1c 2010 Question 1c ò 1 -1 ae2 xdx é ae ù =ê ú ë 2 û-1 2x 1 ae2 ae-2 = 2 2 2012 2012 4x -1 ò 2 x+ 3 dx 6 13 = ò 4dx 2 x+ 3 6 = éë4x -13ln x+ 3 ùû 6 2 = 8.359 2012 2012 • First find the x-value of the intersection point x a = 2 Þ x=a 2 a x 2012 æa xö ò1 çè x2 - a2 ÷ø dx a é -a x ù =ê - 2ú ë x 2a û1 2 a 3 1 = - + a+ 2 2 2a 2010 Question 1e 2010 Question 1e • Find intersection points 1 x = px Þ x = 3 p -2 1 x = 8x Þ x = 2 -2 2010 Question 1e ò 0 ( 8x - px)dx+ ò 1/2 1 2 é 2 px2 ù = ê4x ú 2 û0 ë 1 3 p 1 2 -2 x ( - px)dx 1 3 p é -1 px2 ù +ê ú 2 û1 ëx 2 3 pö æ æ pö æ 3 pö = ç1- ÷ + ç- p ÷ - ç-2 - ÷ è 8ø è 2 ø è 8ø 33 p = 32 Looking at areas a different way As the value of dy decreases, the area of the rectangle approaches x x dy The equation of the line is 3 y=- x+ 3 4 3 Rearrange dy x 0 4 Definite Integral is ò 3 0 x dy 4( 3 - y) 4 x= =4- y 3 3 2 ù3 é 3æ 4 ö 2y = ò ç 4 - y÷dy = ê4 y ú =6 0è 3 ø 3 û0 ë Areas between two curves y= x y =x 2 A typical rectangle in the upper Solving these section Equations gives 1 x=y y=1 x = y2 x-x Area =(x - x )dy Area for this section is 1 ò 0 (y - y )dy = 6 1 2 dy A typical rectangle in the lower section x=y x = y2 x -x Area =(x - x )dy Area for this section is 5 ò-1(y - y)dy = 6 0 2 Total area is equal to 1 dy y= x Example 2 2 A typical rectangle dx y-y Area = (y - y)dx y =1- x 2´ ò 0.707 0 0.707 2 (y2 - y1 )dx = 2 ´ ò 0.707 0 Area (1- x - x )dx = 2 ´ 2 2 ò 0.707 0 1 (1)dx = 2 = 1.414 2 Practice More practice Delta Exercise 16.2, 16.3, 16.4 Worksheet 3 and 4 Area in polar: extra for experts