Rigid motions
Download
Report
Transcript Rigid motions
Introduction to ROBOTICS
KINEMATICS
POSE (POSITION AND
ORIENTATION)
OF A RIGID BODY
University of Bridgeport
1
Representing Position (2D)
y
5
p
2
(“column” vector)
p
2
p 5 xˆ 2 yˆ
xˆ
yˆ
A vector of length one pointing
in the direction of the base
frame x axis
2
A vector of length one pointing
in the direction of the base
frame y axis
5
x
Representing Position: vectors
yˆ b
• The prefix superscript denotes the
reference frame in which the vector
should be understood
yˆ a
p
2
2
3
b
5
b
5
p
2
3 8
2 4
a
3
p
2
3
Same point, two different
reference frames
xˆ a
xˆ b
Representing Position: vectors (3D)
y
y
p
x
2
p 5
2
z
p 2 xˆ 54 yˆ 2 zˆ
x
z
right-handed
coordinate frame
xˆ
A vector of length one pointing in the
direction of the base frame x axis
yˆ
zˆ
A vector of length one pointing in the
direction of the base frame y axis
A vector of length one pointing in the
direction of the base frame z axis
The rotation matrix
A
cos
R B
sin
A
A
sin
cos
yˆ B
p
xˆ B
p RB p
A
yˆ A
B
R B :To specify the coordinate vectors
for the fame B with respect to
frame A
B
R A RB
A
B
1
cos
sin
5
p RA p
B
A
sin
cos
xˆ A
θ: The angle between xˆ A and xˆ B
in anti clockwise direction
USEFUL FORMULAS
B
A
R (B R)
A
RR
B
A
1
1
(B R)
A
T
I
R .B R I
A
Det ( R ) 1
6
B
10
p
10
Example 1
A
B
yˆ
yˆ
A
find p
B
cos 30 sin 30
30
R B
cos 30
sin 30
30
3
1
A
A
B
A
2
2
p RB p
RB
1 7
3
3
1
10 3.6603
2
2
A
2
2
P
1
3 10 13.6603
2
2
xˆ
A
A
xˆ
BASIC ROTATION MATRIX
Rotation about x-axis with
0
0
1
Rot ( x , ) 0 C S
0 S
C
pu
px
p y R ( x, ) pv
p w
p z
z
w
P
v
u
y
x
p x pu
p y p v cos p w sin
p z p v sin p w cos
8
BASIC ROTATION MATRICES
Rotation about x-axis with
R x ,
Rotation about y-axis with
Rotation about z-axis with
Pxyz RP uvw
0
S
C
0
C
S
R y ,
1
Rot ( x , ) 0
0
C
Rot ( y , )
0
S
0
1
0
S
0
C
R z ,
C
Rot ( z , ) S
0
S
C
0
0
0
9
1
EXAMPLE 2
A
point p ( 4 ,3, 2 ) is attached to a rotating frame,
the frame rotates 60 degree about the OZ axis of
the reference frame. Find the coordinates of the
point relative to the reference frame after the
rotation.
uvw
p xyz Rot ( z , 60 ) p uvw
0 .5
0 . 866
0
0 . 866
0 .5
0
0 4 0 . 598
0 3 4 . 964
1 2
2
10
EXAMPLE 3
A
point a ( 4 ,3, 2 ) is the coordinate w.r.t. the
reference coordinate system, find the
corresponding point a uvw w.r.t. the rotated
OUVW coordinate system if it has been
rotated 60 degree about OZ axis.
xyz
p uvw R ot ( z , 60) p xyz
T
O R : p uvw R ot ( z , 60)
1
p xyz
O R : p uvw R ot ( z , 60) p xyz
0.5
0.866
0
0.866
0.5
0
0 4 4.598
0 3 1.964
1 2
2
11
COMPOSITE ROTATION MATRIX
A sequence of finite rotations
rules:
if rotating coordinate OUVW is rotating about principal axis of
OXYZ frame, then Pre-multiply the previous (resultant) rotation
matrix with an appropriate basic rotation matrix [rotation about
fixed frame]
if rotating coordinate OUVW is rotating about its own principal
axes, then post-multiply the previous (resultant) rotation matrix
with an appropriate basic rotation matrix [rotation about current
frame]
12
ROTATION WITH RESPECT TO CURRENT
FRAME
A
A
P RB P
B
B
P RC P
C
C
P RD P
D
A
P R D P R B RC R D P
B
C
A
A
D
A
B
R D R B RC R D
A
B
C
C
D
13
EXAMPLE 4
Find the rotation matrix for the following operations:
R Rot ( y , ) Rot ( z , ) Rot ( x , )
R otation about Y axis
R otation about current Z axis
R otation about current X axis
C
0
- S
0
1
0
C C
S
S C
S C
0
S
C 0
S
C
0
S S C S C
C C
SSC C S
Pre-multiply if rotate about the fixed frame
Post-multiply if rotate about the current
14
frame
0 1
0 0
1 0
0
C
S
S
C
0
C S S S C
C S
C C S S S
EXAMPLE 5
Find the rotation matrix for the following operations:
R Rot ( y , ) Rot ( z , ) Rot ( x , )
Rotation
about X axis
Rotation
about fixed Z axis
Rotation
about fixed Y axis
C
0
- S
0
1
0
C C
S
S C
S C
0
S
C 0
C
0
S S C S C
C C
SSC C S
Pre-multiply if rotate about the fixed frame
Post-multiply if rotate about the current
frame
15
S
0 1
0 0
1 0
0
C
S
S
C
0
C S S S C
C S
C C S S S
EXAMPLE 6
Find the rotation matrix for the following operations:
Rotation
about X axis
Rotation
about current Z
Rotation
about fixed Z axis
Rotation
about current Y axis
Rotation
about fixed X axis
16
axis
Pre-multiply if rotate about the fixed frame
Post-multiply if rotate about the current
frame
EXAMPLE 6
Find the rotation matrix for the following operations:
Rotation
about X axis
Rotation
about current Z
Rotation
about fixed Z axis
Rotation
about current Y axis
Rotation
about fixed X axis
axis
R Rot ( x , ) Rot ( z , ) Rot ( x , ) Rot ( z , ) Rot ( y , )
17
QUIZ
Description of Roll Pitch Yaw
Find the rotation matrix for the following operations:
Z
Rotation about X axis{ROLL}
Rotation
about fixed Y axis{PITCH
Rotation
about fixed Z axis{YAW}
}
X
Y
18
Z
ANSWER
Rotation about X axis
Rotation
about fixed Y axis
Rotation
about fixed Z axis
R Rot ( z , ) Rot ( y , ) Rot ( x , )
C
S
0
S
C C
SC
S
C
0
0 C
0
0
1 - S
0
1
0
S 1
0
0
C 0
SS C SS
C SS C S
C S
Y
X
0
C
S
S
C
0
C S C S S
C S S S C
C C
19
HOMOGENEOUS TRANSFORMATION
Special cases
1. Translation
A
HB
2. Rotation
A
HB
I 3 3
0 1 3
p
1
ARB
0 1 3
0 3 1
1
A
B
20
EXAMPLE 7
Translation along Z-axis with h:
1
0
Trans ( z , h )
0
0
0
0
1
0
0
1
0
0
x 1
y
0
z 0
1 0
0
0
h
1
z
0
0
1
0
0
1
0
0
0 p x1 p x1
0 p y1
p y1
h p z1 p z1
1 1 1
z
h
P
P
B
y
w
y
z
B
y
v
O
u
x
B
h
O
x
x21
EXAMPLE 7
Translation along Z-axis with h:
0
P H B P
x 1
y
0
z 0
1 0
0
B
0
0
1
0
0
1
0
0
0 p xB
0 p yB
h p yB
1 1
p xB
p yB
pz
B
1
h
22
EXAMPLE 8
Rotation
1
0
Rot ( x , )
0
0
about the X-axis by
0
0
C
S
S
C
0
0
0
0
0
1
x 1
y
0
z 0
1 0
0
0
C
S
S
C
0
0
0 p x1
0 p y1
0 p z1
1 1
z
z1
P
y1
y
x1
x
23
HOMOGENEOUS TRANSFORMATION
Composite Homogeneous Transformation Matrix
Rules:
Transformation (rotation/translation) w.r.t fixed
frame, using pre-multiplication
Transformation (rotation/translation) w.r.t current
frame, using post-multiplication
24
EXAMPLE 9
Find
the homogeneous transformation
matrix (H) for the following operations:
Rotation
about OX axis
Translatio
n of a along OX axis
Translatio
n of d along OZ axis
Rotation
of about OZ axis
H Rot
Answer :
C
S
0
0
z ,
Trans
S
0
C
0
0
1
0
0
z ,d
Trans
0 1
0 0
0 0
1 0
x ,a
Rot
0
0
1
0
0
1
0
0
x ,
0 1
0 0
d 0
1 0
0
0
1
0
0
1
0
0
a 1
0 0
0 0
1 0
0
0
C
S
S
C
0
0
0
0
0
25
1
Remember those double-angle formulas…
sin sin cos cos sin
cos cos cos sin sin
26
Review of matrix transpose
a 11
A a 21
a 31
a 12
a 22
a 32
a 13
a 23
a 33
A
a 11
a
21
a 31
a 12
a 22
a 32
T
a 11
a 12
a 13
a 21
a 22
a 23
a 31
a 32
a 33
a 13
a 23
a 33
27
5
p
2
p 5
T
2
T
Important property: A B
T
BA
T
and matrix multiplication…
a 11
A
a 21
a 11
AB
a 21
a 12
a 22
a 12 b11
a 22 b 21
b11
B
b 21
b12
b 22
b12 a 11 b11 a 12 b 21
b 22 a 21 b11 a 22 b 21
a 11 b12 a 12 b 22
a 21 b12 a 22 b 22
Can represent dot product as a matrix multiply:
28
a b a xbx a yb y a x
bx
T
ay a b
b y
HW
Problems 2.10, 2.11, 2.12, 2.13, 2.14 ,2.15, 2.37,
and 2.39
Quiz next class
29