Transcript Slide 1
Spin-orbit coupling and spintronics in ferromagnetic semiconductors (and metals) Tomas Jungwirth Institute of Physics ASCR Alexander Shick, Jan Mašek, Josef Kudrnovský, František Máca, Karel Výborný, Jan Zemen, Vít Novák, Kamil Olejník, Jairo Sinova et al. University of Nottingham Bryan Gallagher, Tom Foxon, Richard Campion, Kevin Edmonds, Andrew Rushforth, Chris King et al. Hitachi Labs., UK & Japan Jorg Wunderlich, Byong-Guk Park, Andrew Irvine, Elisa De Ranieri, Samuel Owen, David Williams, Akira, Sugawara, et al. Outline 1. Intro – spin-orbit coupling in spintronics 2. GaMnAs based spintronic devices 3. GaMnAs and other spin-orbit coupled ferromagnetic materials e- Spintronics Spin-orbit couping nucleus rest frame I Qv & E electron rest frame Q 4 0 r … it’s all about spin and charge of electron communicating 3 r & 0 I r B 3 4 r 1 B 0 0 v E 2 v E c Lorentz transformation Thomas precession SO-couping = E&M and postulated electron spin H SO g B e e 1 dV (r ) SB S vE S l 2 2 2m c 2 2m c er dr Ferromagnetism = Pauli exclusion principle & Coulomb repulsion etotal wf antisymmetric e- = orbital wf antisymmetric * spin wf symmetric (aligned) DOS e… collective communication DOS macroscopic moment large effects GMR ~ 1% MR effect ~ 10% MR effect < AMR FM & SO-coupling (M ) FM only ( ) + larger MR + linear sensing, low-noise - low MR, low-resistance TAMR AlOx Au TDOS - CBAMR TMR ~ 100% MR effect Au (M ) low-resistance, non-linear, spin-coherence, exchange biasing or interlayer coupling, higher noise TDOS TDOS chem. pot. Combining “+” and eliminating “-” of AMR and TMR(GMR) & SET gating spintronic transistor + very large MR, high resistance, bistable memory - non-linear, spin-coherence, exchange biasing, higher noise SO-coupling magnetocrystalline anisotropies sensitivity to lattice distortions Ferromagnetic/magnetostrictive magneto-sensors, transducors, memory, storage piezo/FM hybrids FM semiconductors Semicondicting/gatable Ferroelectric/piezoelectric electro-sensors, transducors, memory FeFET transistors, processors Systems integrating all three basic elements of current microelectronics Outline 1. Intro – spin-orbit coupling in spintronics 2. GaMnAs based spintronic devices 3. GaMnAs and other spin-orbit coupled ferromagnetic materials (Ga,Mn)As: archetypical system for SO-coupling based spintronics research Ga SW-transf. Jpd SMn . shole As-p-like holes Mn As Mn Mn-d-like local moments Dilute Mn-doped SC: sensitive to doping; 100smaller Ms than in conventional metal FMs weak dipolar fields Mn-Mn coupling mediated by holes in SO-coupled SC valence bands: sensitive to gating, comparable magnetocrystalline anisotropy energy and stiffness to metal FMs Model sp-d ferromagnet: kinetic-exchange (Jpd) & host SC bands provides simple yet often semiquantitative description Coulomb blockade AMR – anisotropic chemical potential Source Q VD Drain Gate VG M || <110> Q( M ) U dQ'VD ( Q' ) e 0 [110] M || <100> [010] M F Q [100] [110] [010] ( Q Q0 )2 ( M ) C U & Q0 CG [ VG VM ( M )] &VM 2C e CG electric & magnetic control of Coulomb blockade oscillations (M) Tunneling AMR – anisotropic TDOS TAMR in GaMnAs Au GaMnAs Au Anisotropc tunneling amplitudes M perp. Resistance AlOx Magnetisation in plane ~ 1-10% in metallic GaMnAs M in-plane Huge when approaching MIT in GaMnAs One Strain controlled micromagnetics (b) 0.1-1 m DW structure and dynamics directly reflecting e.g. (strain dependent) competition between uniaxial and cubic anisotropies 500 nm strain ~ 10-4 … plus 100-10x smaller currents for DW switching and 100-10x weaker dipolar crosslinks prospect for dense integration of magnetic microelements switchable by low currents One Sensitivity of AMR to lattice distortions bulk GaMnAs GaAs ~100nm - 1m wide bars Outline 1. Intro – spin-orbit coupling in spintronics 2. GaMnAs based spintronic devices 3. GaMnAs and other spin-orbit coupled ferromagnetic materials coupling strength / Fermi energy Magnetism in systems with coupled dilute moments and delocalized band electrons band-electron density / local-moment density (Ga,Mn)As GaAs VB GaAs:Mn extrinsic semiconductor Mn-acceptor level (IB) GaMnAs disordered VB 2.2x1020 cm-3 VB-IB VB-CB Short-range ~ M . s potential - additional Mn-hole binding - ferromagnetism - scattering MIT (and ferromagnetism) at relatively large doping suppressed gating effect MIT in p-type GaAs: - shallow acc. (30meV) ~ 1018 cm-3 - Mn (110meV) ~1020 cm-3 MIT in GaAs:Mn at order of magnitude higher doping than quoted in text books Weak hybrid. Delocalized holes long-range coupl. optimal combination of large SO-cupling, hole delocalization, hole-Mn coupling SO-coupling strength, band-parabolicity Search for optimal III-V host InSb, InAs d5 GaAs GaP Strong hybrid. Impurity-band holes short-range coupl. AlAs d5d4 no holes d GaN d4 I(II,Mn)V dilute-moment ferromgantic semiconductors III = I + II Ga = Li + Zn • GaAs and LiZnAs are twin semiconductors • Prediction that Mn-doped are also twin ferromagnetic semiconductors • No limit for Mn-Zn (II-II) substitution within the same crystal structure • Independent carrier (holes and electrons) doping by Li-Zn stoichiometry adjustment Zinc Blende – (III,Mn)V I(II,Mn)V as a link between DMSs and high-Tc half-metalic Heuslers, all comaptible with III-V technology I(II,Mn)V + interstitial FCC + interstitial + interstitial Half Heusler (NiMnSb) Rock Salt + interstitial + interstitial High Tc large SO-coupling TM thin films and ordered alloys heavy TM FM TM heavy TM FM TM FM TM heavy TM spontaneous moment spin-orbit coupling magnetic susceptibility Key: large induced moment on strongly SO-coupled heavy TM B. G. Park, J. Wunderlich, D. A. Williams, S. J. Joo, K. Y. Jung, K. H. Shin, K. Olejnik, A. B. Shick, and T. Jungwirth: Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlOx/Pt structures, submitted to Phys. Rev. Lett. (2007) Akira Sugawara, H. Kasai, A. Tonomura, P. D. Brown, R. P. Campion, K. W. Edmonds, B. L. Gallagher, J. Zemen, and T. Jungwirth: Domain walls in (Ga,Mn)As diluted magnetic semiconductor, Phys. Rev. Lett. in press (2007) A. W. Rushforth, K. Výborný, C. S. King, K. W. Edmonds, R. P. Campion, C. T. Foxon, J. Wunderlich, A. C. Irvine, P. Vašek, V. Novák, K. Olejník, Jairo Sinova, T. Jungwirth, B. L. Gallagher: Anisotropic magnetoresistance components in (Ga,Mn)As, Phys. Rev. Lett. 99 (2007) 147207 J. Masek, J.Kudrnovsky, F. Maca, B. L. Gallagher, R. P. Campion, D. H. Gregory, and T. Jungwirth: Dilute moment n-type ferromagnetic semiconductor Li(Zn,Mn)As, Phys. Rev. Lett. 98 (2007) 067202 J. Wunderlich, T. Jungwirth, B. Kaestner, A. C. Irvine, K.Y. Wang, N. Stone, U. Rana, A. D. Giddings, A. B. Shick, C. T. Foxon, R. P. Campion, D. A. Williams, B. L Gallagher: Coulomb Blockade Anisotropic Magnetoresistance Effect in a (Ga,Mn)As Single-Electron Transistor, Phys. Rev. Lett. 97 (2006) 077201 T. Jungwirth, Jairo Sinova, J. Mašek, J. Kučera, and A.H. MacDonald: Theory of ferromagnetic (III,Mn)V semiconductors, Rev. Mod. Phys. 78 (2006) 809 C. Rüster, C. Gould, T. Jungwirth, J. Sinova, G.M. Schott, R. Giraud, K. Brunner, G. Schmidt, L.W. Molenkamp: Very Large Tunneling Anisotropic Magnetoresistance of a (Ga,Mn)As/GaAs/(Ga,Mn)As Stack, Phys. Rev. Lett. (2005) 027203