Transcript PowerPoint 演示文稿
在
RIBLL
上开展的质子晕与双质子发射实验研究
中国原子能科学研究院
C
hina
I
nstitute of
A
tomic
E
nergy
林承键、徐新星、贾会明、杨峰、刘祖华、张焕乔等 中国原子能科学研究院,北京
275
信箱
10
分箱,
102413
王建松、徐瑚珊、雷相国、胡正国、孙志宇、杨彦云等 中国科学院近代物理研究所,甘肃兰州,
730000
内 容 一、研究背景与历史回顾 二、用透射法开展的质子晕结构研究 三、运动学完全测量进行的双质子发射研究 四、总结与展望 五、
RIBLL
合作的一些想法
一、研究背景与历史回顾
1.
国内奇特核结构(晕核)研究的兴起
1998
年之前:
HI-13
串列加速器,低能重离子熔合
-
裂变研究
垒下熔合
-
裂变碎片角分布各向异性异常的实验研究与预平衡裂变模型 的理论解释 - 低能核物理实验研究跻身世界先进水平的标志。 然而,课题申请困难。。。
1998 – 2004
:
HI-13
串列加速器,激发态晕结构研究
12 B, 13 C
激发态中子晕结构研究 -
(d,p)
反应,
Q3D
磁谱仪
ANC
方法、核天体
(n,
)
反应、晕核标度定律
… …
2000
年至今:
HIRFL-RIBLL
装置,放射性核束,质子晕与双质子 发射研究
2000 – 2004
:
29 S, 27,28 P
,透射法、反应截面、
Glauber
理论、质子晕
2004
年至今:
17,18 Ne, 28,29 S
,运动学完全测量、双质子关联、奇特衰变
Z.H. Liu, C.J. Lin et al., Chin. Sci. Bull. 46, 43 (2001); Phys. Rev. C64, 034312 (2001); C.J. Lin, Z.H. Liu et al., Chin. Phys. Lett. 18, 1183 (2001); Chin. Phys. Lett. 18, 1446 (2001).
Tanihata, H. Hamagaki et al., Phys. Lett. B160, 380 (1985); Phys. Rev. Lett. 55, 2676 (1985).
图:目前实验发现的晕核及其种类(截至
2002
年)
二、用透射法开展的质子晕结构研究
1.
实验过程:
主束: 36 Ar, 69 MeV/u 初级靶: Be, 98.8 mg/cm 2
T2
方靶室: Position & TOF: PPAC + Sci. + PPAC E: Si (150 m, 20 mm) Targets & detectors: 6-Si (300 m, 45 45 mm 2 ) 次级束: 29 S: ~ 5 pps 27 28 P: ~ 15 pps P: ~ 30 pps 图:典型的束流粒子鉴别谱
Reaction cross section:
A:
mass number
:
density of target
:
Avogadro’s number
x i
:
thickness of
Ei
i
:
reaction probability, the ratio of the reaction events to the total events (gated on TOF
E i
) [cf: R. E. Warner et al., Phys. Rev. C 52, R1166 (1995).] 图:拟合提取反应几率的示意图
2.
29
S
双质子晕的现象:
图:实验截面与理论计算的比较 图:实验截面与理论计算的差别
图:
29 S
及其核芯
27 Si
反应截面的比较
Z. H. Liu et al., Chin. Phys. Lett. 21, 1711 (2004).
3.
27,28
P
质子晕与核芯增大的现象:
图:
28 P
及其核芯
27 Si
的比较 图:
27 P
及其核芯
26 Si
的比较
Z. H. Liu et al., Phys. Rev. C 69, 034326 (2004).
三、运动学完全测量进行的双质子发射研究
1. Introduction – 1p & 2p radioactivity
Radioactivity (H. Becquerel, 1896) , decay (P. Curie, M. Curie, and E. Rutherford, 1899) radiation (P. Villard, 1900) Fission (O. Hahn and F. Strassmann, 1938) ♣ 1p & 2p radioactivity: First proposed by V.I. Goldanskii & Y.B. Zeldovich in 1960 cf: V.I. Goldanskii, Nucl. Phys. 19, 482 (1960); Y.B. Zeldovich, Sov. Phys.-JETP 11, 812 (1960).
♣ 1p (Up to now, about 25 emitters were found) Isomer state – 53 Co m was observed in 1970 cf: K.P. Jackson et al., Phys. Lett. B 33 , 281 (1970); J. Cerny et al., Phys. Lett. B 33, 284 (1970).
Ground state – 151 Lu & 147 Tm were observed in 1982 cf: S. Hofmann et al., Z. Phys. A 305, 111 (1982); O. Klepper et al., Z. Phys. A 305, 125 (1982).
♣ 2p (3 emitters were certified – 45 Fe, 54 Zn, 48 Ni) cf: J. Giovinazzo et al., Phys. Rev. Lett. 89, 102501 (2002); B. Blank et al., ibid 94, 232501 (2005).
Ground state – 6 Be, 12 O, 16 Ne, 19 Mg, 45 Fe, 48 Ni, 54 Zn …… Excited state – 14 O, 17,18 Ne, 94 Ag …… (directly 2p emitters)
Basic concept of 1p & 2p emission
1 S
1p emission 2p emission cf: B. Blank and M. Ploszajczak, Rep. Prog. Phys. 71, 046301 (2008).
Meanings:
1) A good probe to extract the information of nuclear structure for the proton-rich nuclei close to or beyond the proton drip-line.
2) A good tool to study the nucleon-nucleon (like
p
-
p
) pair correlation inside a nucleus and the relative topics (such as superfluidity, BCS, BEC …) 3) A good way to investigate the astronuclear processes like (2
p
, ) and ( ,2
p
).
4) And more ……
2p halo structure
2p correlated emission
Basic idea: 2p halo/skin 2p correlated emission 2p valence pair above 2p emission threshold weak link with core (decoupled) Beyond 1p drip-line Ground state 6 Be, 12 O, 16 Ne, 19 Mg, 45 Fe, 48 Ni, 54 Zn …… Initial state configuration 2p resonance state Excited state: 14 O, 17,18 Ne, 28,29 S, ……
BCS crossover?
BEC
Our interesting points
Heavy emitters:
( A > 40 ) 39 Ti, 42 Cr, 45 Fe , 48 ,49 Ni , 54 Zn … High Coulomb barrier Ground state Long lifetime ( > ps) Offline decay measurement
Intermediate emitters:
( 20 < A < 40 ) 22-24 Si, 26-29 S, 31,32 Ar, 34 Ca… Medium Coulomb barrier Ground state, lowly or highly excited state Short lifetime (~ fs/keV/MeV order) Online complete-kinematics measurement
Light emitters:
( A < 20 ) 6 Be, 12,14 O, 16, 17,18 Ne , 19 Mg … Low Coulomb barrier Ground state or lowly excited state Short lifetime (~ keV order) Online complete-kinematics measurement Z 8 20 N 8 28 20 28
Two-proton halo/skins in
27-32
S
Figure: Density distributions of valence particles For the proton-rich sulfur isotopes, Z=16, 2p in the 2s 1/2 orbit.
Calculated by single-particle potential model.
c.f. C.J. Lin et al., Phys. Rev. C 66, 067302 (2002).
2p S 2p = 0.9 MeV 3.4
5.4
7.1
11.7
16.2
Figure: Contributions of valence particles
2. RIBLL Experiment 2005 – –
29
S+
28
Si
p 29 S 27 Si p
PPAC1
Collimators
PPAC 2
E 12 C X1 Y1 X2 Y2 Stop CsI+PIN
Target Chamber 121 124
.
8 176
.
5 240.7
Z(mm) -906
.
3 -37.3
-3.1
0 2.9
4.7
Collimators:
E:
150 m Si 30mm & 20mm.
E detector, combined with TOF (upstream) for particle identification.
12 C:
target, 300 m.
X1, Y1, X2, Y2 :
300 m Si strip E detectors, 18 strips each, 1.2mm/strip with 0.1 mm interval.
Stop:
300 m Si E detector, for stopping all the heavy fragments.
CSI:
CSI(Tl)+PIN array, 24 segments, for light particle (p, d, etc.) identification.
CIAE-RIBLL-2005 detector array
自制的硅条探测器、
CsI
闪烁体阵列和电荷灵敏前置放大器; 首次实现参数达
200
余路的运动学完全测量。
Secondary beam identification
Primary beam: 36 Ar 80.4 MeV/u Secondary beam: 29 S 46.8 MeV/u intensity: ~ 10 pps Purity: 1% 1 10 7 29 S was accumulated
30 S 29 P 27 P 29 S 28 Si 28 P 27 Al 26 Si 25 27 Si Al 26 Al 25 Mg 24 Mg 23 Na 22 Ne
Yields of light particles in 28 P, 29 S+ 12 C( 28 Si) reactions IMP data:
without any coincidence, M. Wang et al., High Energy Physics and Nuclear Physics 26, 803 (2002).
CIAE data:
coincide with heavy fragments this work.
Proton removal cross sections 29 S: 1p 28 P: 1p = 3.15
0.32 b = 2.13
0.22 b 2p = 1.85
0.20 b
2p angular correlation 2p relative momentum 2p singlet s state 2p sequentially emitted q = |p 1 -p 2 |/2
C.J. Lin et al., INPC2007
口头报告
, Nucl. Phys. A805, 403 (2008)
3. RIBLL Experiment 2007 – –
17,18
Ne+
197
Au
Complete-kinematics measurement
Identifications of the secondary beams
Primary beam: 20 Ne, 78.2 MeV/u; Primary target: 9 Be, 1590 m Degrader: 27 Al, 1024 m; Secondary target: 197 Au, 200 m Secondary beam:
17 Ne
, 50.0 MeV/u, Secondary beam:
18 Ne
, 51.8 MeV/u, intensity 200 pps, purity 10% intensity 800 pps, purity 40%
Identification of heavy fragments
17 Ne 18 Ne
Identification of light particles
17 Ne 18 Ne
17,18 Ne results
Excitation-energy spectra F. Jia, C. J. Lin, H. Q. Zhang et al., Chin. Phys. Lett. 26, 032301 (2009).
X10 17 Ne Main results from relative momenta & opening angles 1) No obvious 2 He emission from 17 Ne, at present. 2) 2 He emission from 6.15 MeV state of 18 Ne was confirmed.
momentum correlation functions and HBT analyses
17 Ne 18 Ne Exc: 5.17
+0.09
-0.08
fm Inc: 7.50
+0.09
-0.09
fm Exc: 5.44
+0.19
-0.17
fm Inc: 6.06
+0.08
-0.09
fm
Preliminary
17 Ne: NPA733, 85(2004) BCS or BEC ?
2p opening angel 74.5
3.4
BCS/BEC crossover 17 Ne
4. RIBLL Experiment 2007 – –
28,29
S+
197
Au
Detector array for 28,29 S experiment
Complete-kinematics measurements
Secondary target:
197
Au, 100 µm SD: Silicon detectors, 325, 1000 µm SSSD: Single sided Silicon Strip Detectors, 300 µm, 24 strips with 2 mm in the width and 0.1 mm in the interval for the construction of the particle trajectories CsI(Tl) array: 6
×
6 lattices, each 15
×
15
×
20 mm, read out through PIN photodiodes
Face Back
Identifications of the secondary beams 28
S: 48.0 MeV/u Intensity: Purity: 1% 30 pps Dose: ~ 3 10 6
29
S: 49.2 MeV/u Intensity: Purity: 3% 200 pps Dose: ~ 2.5 10 7
29 S time window Events induced only by 29 S Eliminate the contamination of 26,27 Si directly from the secondary beam and the accidental coincidences.
Selection of heavy fragments
Si-isotope band
Selection of light particles
blue dots: single-hit events red dots: double-hit events In this way, the unmixed 29 S 27 Si+
p
+
p
events are selected.
Trajectory tracking – selection of reactions in the target
Cross point of trajectories before and after reaction 29 S 28 P+
p
events 29 S 27 Si+
p+p
events
Results: Monte-Carlo simulations Three extreme decay modes
40 30 20 20 50 20 20 50 40 30 2 He cluster decay 3-body democratic decay 2-body sequential decay 140 120 100 80.0
60.0
40.0
20.0
0 50 40 1000 875 750 625 500 375 250 125 0 50 40 900 800 700 600 500 400 300 200 100 0 30 30 30 40 E p2 (MeV) 50 4 2 10 8 6 20 20 50 20 20 30 40 E p2 (MeV) 50 30 40 E p2 (MeV) MC simulations, sampling in phase space, no FSI.
Experimental results, likely 2 He cluster decay.
30 40 E p2 (MeV) 50
Relativistic-kinematics reconstruction for 29 S 27 Si+p+p events Relative momentum,
q pp
= |
p
1 -
p
2 |/2 Feature 1: small
q pp
(~ 20 MeV/c) Opening angle,
pp
cm Feature 2: small
pp
cm (< 90 ) Invariance mass
E
* (
E i
) 2 (
P i c
) 2
M
Strong
p-p
correlations 2 He cluster decay ?
3-body simultaneous decay ?
2-body sequential decay ?
or more complicated mode ?
7.4
10.0
3-body system of the final state
Excitation-energy spectrum of 29 S reconstructed by 27 Si+
p
+
p
Experimental evidences of 2 He emission from the 10 MeV excited states of 29 S 29 10 11 %
More evidences… Relative energy of two protons,
E pp
Resonance of 2 He quasi-bound states ?
Precise theoretical description is required ! C. J. Lin et al., Phys. Rev. C 80, 014310 (2009).
2p emission from
28
P
2p correlated emission Large deformation? 2p intrinsic configuration?
X. X. Xu, C. J. Lin, H. M. Jia et al., Phys. Rev. C 81, 054317 (2010).
2
emission from
28
P
2
uncorrelated emission or correlated ( 8 Be) emission?
X. X. Xu, C. J. Lin, H. M. Jia et al., Phys. Rev. C 82, 064316 (2010).
四、总结、展望与感想
1. 2p halo and 2p emission
2
p
BCS/BEC 2
p
halo cf: K. Hagino
et al
., Phys. Rev. Lett.
99
, 022506 (2007).
Decay with large Spectroscopic factor Link between 2p halo and 2p emission cf: C.J. Lin
et al
., Phys. Rev. C
66
, 067302 (2002).
2. Outlook
Pay attention to:
The link between 2p halo and 2p emission & pygmy resonance.
Explore the ground-state emitter: 26 S, 30 Ar, 34 Ca , 38 Ti, 48 Ni, 59 Ge, 63 Se, 67 Kr …
Precise theoretical descriptions embedded in the MC simulations.
RIBLL Experiment 2012 – –
34, 35 ,36,37
Ca Directly 2p emission &
-delayed 2p emission
T 1 T 2 SD0 Scint1.
PPAC1 Scint2.
SD1 PPAC2 Clover SD2 DSSD SD3,4 SD0,1,2 (
Silicon detectors, 300 µm
) SD3,4 (
Silicon detectors, 1500 µm
) DSSD (
Double sided Silicon Strip
Detectors,500 µm, 16 strips
)
34, 35 Ca
ToF: Start: T1, RF Stop: T2, SD Clover
37
Ca
的初步结果
GANIL results: T1/2 = 181.7(36) ms, E
decay
~ 3.1 MeV
探测技术的发展
N early 4-
covered charged-particle detector array
Under construction at CIAE
Layer 1
-- DSSD, T: 64 / 300 m , A: 64 64 mm 2 , W: 0.96 mm, I: 0.04
D: 90 mm, H: m.
10 mm, W: 0.96mm, I: 0.04mm, 12 sectors
Layer 2
– DSSD, T: 300 m / 1 mm , same type of layer 1.
Layer 3
– CsI+PIN array, 4 4 (6 6) 50 mm 3 units.
hodoscopes heavy particle & Light particle
五、
RIBLL
合作的一些想法:
国际合作
VS
国内合作
RIBLL
设置的最佳化 - 沟通与协调
数据分析 - 成果共享
电子学(前放)与获取系统(
VME
获取)
大型实验设备的共建与共享
谢 谢 !