Transcript Document
Total Ionizing Dose Effect on Programmable Input Configurations J. J. Wang, R. Chan, G. Kuganesan, N. Charest, B. Cronquist Actel Corporation JJ Wang 1 2005 MAPLD, Paper 240 Outline Total Ionizing Dose Testing Input Threshold TID Testing Data Annealing Effect Failure Analysis and Mechanism Lesson Learned and TID Hardening JJ Wang 2 2005 MAPLD, Paper 240 Total Ionizing Dose Testing TM1019 Military Standard for TID testing (Fig 1) 1 Pre-Irradiation Electrical Tests 2 Radiate to Specific Dose Fail 3 Post-Irradiation Functional Test Redo Test Using Less Total Dose Pass 4 Post-Annealing Electrical Tests Fig 1 TID testing flow JJ Wang 3 2005 MAPLD, Paper 240 DUT and Irradiation 0.25µm CMOS technology Commercial off-shore foundry VCCI/VCCA = 5V/2.5V TTL I/O configuration Defense Microelectronic Activity (DMEA) Co-60 Source Dose Rate = 1 krad(Si)/min (±5%) Room temperature irradiation Static biased irradiation Fig 2 Picture showing Gamma-ray irradiator JJ Wang 4 2005 MAPLD, Paper 240 Parameter Measurement Parameters Logic Design 1 Functionality All key architectural functions 2 ICC (ICCA/ICCI) DUT power supply 3 Input Threshold (VIL/VIH) Input buffers 4 Output Drive (VOL/VOH) Output buffers 5 Propagation Delay String of buffers, Clock to Q 6 Transition Characteristic D flip-flop output VIL defined as the start of low to high transition VIH defined as the start of high to low transition TTL trip point (average of VIL and VIH) ~ 1.5V, CMOS ~ 2.5V JJ Wang 5 2005 MAPLD, Paper 240 Rad-induced Input Threshold Shift Table 1 Lot B Pre- and Post-Irradiation VT (Net 0) Pre-Irradiation DUT Five (A, B, C, D, E in chronological order) lots from foundry X tested 2 lots (B, C) show VIL/VIH switching from TTL to CMOS The number of events increases with total accumulated dose and can be removed by annealing JJ Wang Post-Irradiation Total Dose VIL (V) VIH (V) VIL (V) VIH (V) B1 100 krad 1.25 1.48 1.26 1.53 B2 100 krad 1.24 1.48 2.29 2.52 B3 100 krad 1.25 1.47 1.25 1.47 B4 100 krad 1.25 1.49 1.23 1.51 B5 100 krad 1.25 1.47 2.32 2.55 Table 2 Lot C Pre- and Post-Irradiation VT (Net 0) Pre-Irradiation DUT 6 Post-Irradiation Total Dose VIL (V) VIH (V) VIL (V) VIH (V) C1 60 krad 1.24 1.51 1.38 1.45 C2 60 krad 1.25 1.52 1.22 1.53 C3 60 krad 1.25 1.51 1.24 1.48 C4 100 krad 1.25 1.52 1.23 1.49 C5 100 krad 1.24 1.51 2.41 2.67 C6 100 krad 1.23 1.50 1.24 1.56 C7 100 krad 1.25 1.51 1.26 1.48 C8 100 krad 1.26 1.52 1.41 1.57 2005 MAPLD, Paper 240 Post-Irradiation Input Threshold Switching from TTL to CMOS Lot C is chosen for investigation More design nets are tested for post-irradiation input threshold Part to part and pin to pin dependence observed Table 3 Lot C Post-Irradiation VT Net 1 JJ Wang DUT Total Dose C1 Net 2 Net 3 Net 4 VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) 60krad 1.43 1.46 1.38 1.44 1.39 1.46 NA NA C2 60krad 1.39 1.5 1.41 1.47 1.41 1.49 1.21 1.56 C3 60krad 1.39 1.49 1.31 1.54 1.38 1.46 1.38 1.48 C4 100krad 2.59 2.63 1.42 1.48 2.57 2.64 1.4 1.55 C5 100krad 1.47 1.51 1.44 1.47 1.45 1.49 1.43 1.51 C6 100krad 1.39 1.53 1.35 1.49 1.38 1.5 1.4 1.53 C7 100krad 1.41 1.48 1.38 1.48 1.35 1.49 1.36 1.55 C8 100krad 1.42 1.52 1.43 1.49 1.42 1.49 1.41 1.49 7 2005 MAPLD, Paper 240 Post-Irradiation Input Threshold Switching from TTL to CMOS Table 3 Lot C Post-Irradiation VT Net 5 DUT Total Dose C1 Net 6 Net 8 VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) 60krad 1.39 1.45 1.38 1.46 1.38 1.45 1.39 1.45 C2 60krad 1.4 1.52 1.39 1.55 NA NA 1.38 1.44 C3 60krad 1.37 1.47 1.37 1.47 1.32 1.46 1.36 1.45 C4 100krad 1.37 1.49 1.43 1.49 1.41 1.49 2.61 2.66 C5 100krad 1.47 1.51 1.45 1.51 1.42 1.48 1.42 1.48 C6 100krad 1.39 1.49 NA NA 1.4 1.62 1.51 1.63 C7 100krad 1.38 1.45 1.43 1.51 1.31 1.56 1.4 1.48 C8 100krad 1.44 1.47 1.44 1.48 1.42 1.47 1.43 1.47 DUT Total Dose Net 9 JJ Wang Net 7 Net 10 Net 11 VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) VIH (V) C1 60krad 1.38 1.45 1.38 1.46 1.4 1.45 C2 60krad 1.38 1.45 1.22 1.58 1.41 1.49 C3 60krad 1.34 1.46 1.38 1.48 1.37 1.44 C4 100krad 1.41 1.47 1.38 1.54 1.36 1.46 C5 100krad 1.44 1.51 1.48 1.54 1.45 1.48 C6 100krad 1.37 1.49 1.37 1.57 1.37 1.48 C7 100krad 1.36 1.43 1.13 1.64 1.39 1.49 C8 100krad 1.42 1.49 1.43 1.5 1.42 1.48 8 2005 MAPLD, Paper 240 Annealing Effect Experiment Five DUT from lot C are irradiated to 100 krad with a lower dose rate (1 krad/hr) No switching from TTL to CMOS observed DUT Total Dose Net 0 Net 1 Net 2 VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) Net 3 VIH (V) VIL (V) Net 4 VIH (V) VIL (V) Net 5 VIH (V) VIL (V) VIH (V) C9 100krad 1.36 1.49 1.37 1.49 1.37 1.48 1.33 1.46 1.40 1.49 1.39 1.48 C10 100krad 1.36 1.47 1.42 1.52 1.40 1.48 1.38 1.49 1.43 1.51 1.41 1.50 C11 100krad 1.36 1.49 1.40 1.51 1.39 1.49 1.38 1.50 1.40 1.50 1.41 1.50 C12 100krad 1.36 1.61 1.39 1.50 1.38 1.48 1.35 1.48 1.43 1.52 1.33 1.51 C13 100krad 1.34 1.53 1.37 1.52 1.36 1.54 1.35 1.50 1.34 1.54 1.25 1.59 DUT Total Dose Net 6 Net 7 Net 8 VIL (V) VIH (V) VIL (V) VIH (V) VIL (V) Net 9 VIH (V) VIL (V) Net 10 VIH (V) VIL (V) Net 11 VIH (V) VIL (V) VIH (V) C9 100krad 1.41 1.51 1.38 1.46 1.37 1.46 1.35 1.46 1.44 1.53 1.34 1.45 C10 100krad 1.41 1.51 1.38 1.47 1.39 1.49 1.37 1.49 1.42 1.52 1.38 1.46 C11 100krad 1.41 1.52 1.39 1.48 1.39 1.48 1.38 1.50 1.41 1.51 1.37 1.46 C12 100krad 1.41 1.52 1.38 1.48 1.20 1.59 1.35 1.53 1.43 1.53 1.38 1.47 C13 100krad 1.35 1.55 1.43 1.52 1.42 1.52 1.36 1.49 1.41 1.51 1.43 1.53 JJ Wang 9 2005 MAPLD, Paper 240 Focus Ion Beam Experiment The internal node that is suspected being pulled down by radiation-induced leakage is FIB’ed for microprobing However, the heat generated during the FIB process annealed the device and hence recovered the TTL input threshold from CMOS JJ Wang 10 2005 MAPLD, Paper 240 Fabrication Process Dependence Foundry X show TTL to CMOS switching in 2 out of 5 lots, more recent lots show no switching Foundry Y doesn’t show TTL to CMOS switching in 3 lots Variable material characteristics of the commercial foundry FOX (field oxide) determine the TID tolerance of this phenomenon JJ Wang 11 2005 MAPLD, Paper 240 Configurable Input As shown in Figure below, a popular way to vary the input threshold is to change the strength of the pull-down by changing the turn-on number of NMOSFET pull-downs TTL (1.5V trip point) has more turn-on NMOSFET pulldowns than CMOS (2.5V trip point) PAD To core logic Configuration Control Fig 3 showing the simplified schematic of configurable input JJ Wang 12 2005 MAPLD, Paper 240 Failure Mechanism For testing the programmable switch, node X is holding high by a single weak pull-up for TTL configuration Radiation induced leakage in the NMOS pull-down device pulls node X down (after certain total dose) and switches the input configuration from TTL (trip point ~1.5V) to CMOS (trip point ~2.5V) PAD To core logic Weak pull up Vref Node X Test Control JJ Wang Radiation-induced leakage Programmable Switch 13 2005 MAPLD, Paper 240 Physical Mechanism The charge generation, transport and trapping in a biased oxide layer. The primary effect in sub-micron device is the hole trapping near the Si/SiO2 interface. JJ Wang 14 2005 MAPLD, Paper 240 Physical Mechanism JJ Wang 15 2005 MAPLD, Paper 240 Physical Mechanism Total dose induced edge and field leakage JJ Wang 16 2005 MAPLD, Paper 240 Lesson Learned and TID Hardening Accelerated testing overestimates the effects caused by radiation-induced field leakages Commercial foundries have variable FOX characteristics Weak pull-up is a weak spot for total dose effect Commercial design often is not perfectly radiation optimized due to time to market pressure Two design options 1. Redesign the logic so there is no weak pull-up 2. Re-layout the leaky NMOSFET to “edgeless” (shown below) Gate Drain Source JJ Wang 17 2005 MAPLD, Paper 240