Transcript Document
The transverse spin structure of the nucleon Mauro Anselmino, Torino University and INFN, Vancouver, July 31, 2007 The longitudinal structure of nucleons is “simple” It has been studied for almost 40 years xP P Q2 essentially x and Q2 degrees of freedom …. Very good or good knowledge of q(x,Q2), g(x,Q2) and Δq(x,Q2) Poor knowledge of Δg(x,Q2) 1 S q S g Lq Lg ? 2 (Research Plan for Spin Physics at RHIC) Talk by L. De Nardo The transverse structure is much more interesting and less studied spin-k┴ correlations? orbiting quarks? k b Transverse Momentum Dependent distribution functions 2 q( x, k ; Q ) Space dependent distribution functions 2 q( x, b;Q ) The mother of all functions M. Diehl, Trento workshop, June 07 GPD’s TMD’s Wigner (Belitsky, Ji, Yuan) function TMDs in SIDIS SSA in SIDIS: Sivers functions Collins function from e+e- unpolarized processes (Belle) and first extraction of transversity SSA in hadronic processes Future measurements and transversity (Trento workshop on “Transverse momentum, spin, and position distributions of partons in hadrons”, June 07) Main source of information on transverse nucleon structure SIDIS kinematics according to Trento conventions (2004) Polarized SIDIS cross section, up to subleading order in 1/Q 0 1 d d UU cos 2Φh d UU 1 1 2 3 cosΦh d UU e sin Φh d LU Q Q 6 1 1 4 5 7 S L sin 2Φh d UL sin Φh d UL e d LL cosΦh d LL Q Q 8 9 10 ST sin(Φh ΦS ) d UT sin(Φh ΦS ) d UT sin(3Φh ΦS ) d UT 1 11 12 sin(2Φh ΦS ) d UT sinΦS d UT Q 1 15 e cos(Φh ΦS ) d 13 cosΦS d 14 LT LT cos(2Φh ΦS ) d LT Q Kotzinian, NP B441 (1995) 234 Mulders and Tangermann, NP B461 (1996) 197 Boer and Mulders, PR D57 (1998) 5780 Bacchetta et al., PL B595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 SIDIS in parton model with intrinsic k┴ factorization holds at large Q2, and PT k QCD Ji, Ma, Yuan d lplhX q f q ( x, k ; Q 2 ) dˆ lqlq ( y, k ; Q 2 ) Dqh ( z, p ; Q 2 ) Azimuthal dependence induced by quark intrinsic motion EMC data, µp and µd, E between 100 and 280 GeV M.A., M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia and A. Prokudin Sivers function 1 N f q / p , S ( x, k ) f q / p ( x, k ) f q / p ( x, k ) S ( pˆ kˆ ) 2 k q f q / p ( x, k ) f1T ( x, k ) S ( pˆ kˆ ) M Boer-Mulders function 1 1 N f q , sq / p ( x, k ) f q / p ( x, k ) f q / p ( x, k ) sq ( pˆ kˆ ) 2 2 1 1 k q f q / p ( x, k ) h1 ( x, k ) sq ( pˆ kˆ ) 2 2M 8 leading-twist spin-k┴ dependent distribution functions Courtesy of Aram Kotzinian Collins function 1 N Dh / q , sq ( z , p ) Dh / q ( z, p ) Dh / q ( z , p ) sq ( pˆ q pˆ ) 2 p Dh / q ( z, p ) H1 q ( z, p ) sq ( pˆ q pˆ ) z Mh Polarizing fragmentation function 1 1 N D , S / q ( z , p ) Dh / q ( z, p ) D / q ( z , p ) S ( pˆ q pˆ ) 2 2 1 p Dh / q ( z , p ) D1Tq ( z, p ) S ( pˆ q pˆ ) 2 z M sin( Φ ΦS ) 2 sin(Φ ΦS ) AUT 2 d Φ d Φ ( d d ) sin(Φ ΦS ) S d Φ d Φ ( d d ) S q eq2 N f q / p ( x, k ) D / q ( z , p ) Large K+ asymmetry! sin( Φ ΦS ) 2 sin(Φ ΦS ) AUT 2 d Φ d Φ ( d d ) sin(Φ ΦS ) S d Φ d Φ ( d d ) S q eq2 h1q ( x, k ) N Dh / q ( z , p ) Talk by G. Schnell COMPASS measured Collins and Sivers asymmetries for positive (●) and negative (○) hadrons small values due to deuteron target: cancellation between u and d contributions talk by T. Iwata sin( h S ) AUT N f u / p N f d / p 4 Dh / u Dh / d sin( h S ) AUT h1u h1d 4N Dh / u N Dh / d M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin A fit of HERMES + COMPASS pion data, information on u and d Sivers funtions sea contribution? no sea contribution (Kretzer fragmentation functions) Fragmentation functions DSS = de Florian, Sassot, Stratmann KRE = Kretzer HKNS = Hirai, Kumano, Nagai, Sudoh M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin fit of HERMES + COMPASS pion and kaon data, with new set of fragmentation functions (de Florian, Sassot, Stratmann) Predictions for JLab Present knowledge of Sivers function (u,d) M. Anselmino, M. Boglione, J.C. Collins, U. D’Alesio, A.V. Efremov, K. Goeke, A. Kotzinian, S. Menze, A. Metz, F. Murgia, A. Prokudin, P. Schweitzer, W. Vogelsang, F. Yuan The first and 1/2-transverse moments of the Sivers quark distribution functions. The fits were constrained mainly (or solely) by the preliminary HERMES data in the indicated x-range. The curves indicate the 1-σ regions of the various parameterizations. f1T(1) q 2 k d 2 k 2 f1T q ( x, k ) 2M f1T(1/ 2 ) q ( x) d 2 k k q f1T ( x, k ) M What do we learn from the Sivers distribution? number density of partons with longitudinal momentum fraction x and transverse momentum k┴, inside a proton with spin S dx d a 2 k k f a / p ( x, k ) 0 M. Burkardt, PR D69, 091501 (2004) S k pˆ k Total amount of intrinsic momentum carried by partons of flavour a 1 Nˆ ˆ ˆ ˆ k dx d k k f a / p ( x, k ) f a / p ( x, k ) S ( p k ) 2 a 2 2 N ˆ ˆ ˆ sin S i cos S j dx dk k f a / p ( x, k ) 2 for a proton moving along the +z-axis and polarization vector S cosS iˆ sin S ˆj S ( pˆ kˆ ) sin(S ) ka S Numerical estimates from SIDIS data U. D’Alesio 0.05 k u 0.14-0.06 sin S iˆ cos S k d 0.130.03 sin iˆ cos 0.02 S S ˆj ˆj GeV/c GeV/c Sivers functions extracted from AN data in p p X give also opposite results, with ku 0.032 kd 0.036 k k 0 ? u d ku kd Sivers function and orbital angular momentum D. Sivers Sivers mechanism originates from S Lq then it is related to the quark orbital angular momentum For a proton moving along z and polarized along y 1 0 dx N f q / p ( x, k ) Lqy 2 ? Sivers function and proton anomalous magnetic moment M. Burkardt, S. Brodsky, Z. Lu, I. Schmidt Both the Sivers function and the proton anomalous magnetic moment are related to correlations of proton wave functions with opposite helicities 1 0 dx d 2 k N f q / p ( x, k ) C q ? in qualitative agreement with large z data: sin( Φ ΦS ) sin( Φ ΦS ) AUT AUT related result (M. Burkardt) u d Collins function from e+e– processes (spin effects without polarization, D. Boer) 2 Ph 2 thrust-axis p 2 e- Ph1 y p1 x e+ z e+ 1 e e q q h h X e+e- CMS frame: BELLE @ KEK 2 Eh z , s s 10.52 GeV Fit of BELLE data A12 N D / q ( z1 ) N D / q ( z 2 ) Extraction of Collins functions and transversity distributions from fitting HERMES + COMPASS + BELLE data M. Anselmino, M. Boglione, U. D’Alesio, A. Kotzinian, F. Murgia, A. Prokudin C. Türk What do we learn (if anything yet) from the transversity distributions and the Collins functions ? h1u and h1d have opposite signs They are both smaller than Soffer bound Still large uncertainties Tensor charges appear to be smaller than results from lattice QCD calculations M. Wakamatsu, hep-ph/0705.2917 Collins functions well below the positivity bound. Favoured and unfavoured ones have opposite signs, comparable magnitudes Only the very beginning … TMDs and SSAs in hadronic collisions (abandoning safe grounds ….) pp 0 X (collinear configurations) factorization theorem (?) 0 D X c f p a ˆ b f p X d a ,b , c , d q , q , g f a / p ( xa ) fb / p ( xb ) dˆ abcd D / c ( z) PDF FF pQCD elementary interactions RHIC data s 200 GeV p p X excellent agreement with data for unpolarized cross section, but no SSA BNL-AGS √s = 6.6 GeV 0.6 < pT < 1.2 p p X E704 √s = 20 GeV 0.7 < pT < 2.0 observed transverse Single Spin Asymmetries E704 √s = 20 GeV 0.7 < pT < 2.0 p p X d d AN d d experimental data on SSA STAR-RHIC √s = 200 GeV 1.2 < pT < 2.8 and AN stays at high energies …. talk by L. Bland SSA in hadronic processes: intrinsic k┴, factorization? Two main different (?) approaches Generalization of collinear scheme (M. A., M. Boglione, U. D’Alesio, E. Leader, F. Murgia, S. Melis) D X p f a 0 c ˆ b f p X d a ,b,c ,d q ,q , g f a / p ( xa ,ka ) fb / p ( xb ,kb ) dˆ abcd (ka ,kb ) D / c ( z, p ) It generalizes to polarized case d A,S A B,S B C X a /A' ,S A f a / A,S A ( xa ,ka ) b /B' ,S B f b / B,S B ( xb ,kb ) a a b b ab cd ab cd ˆ ˆ M c ,d ;a ,b M ' , ;' ,' (ka ,kb ) DC,,' C ( z, p ) c d a b c c plenty of phases main remaining contribution to SSA from Sivers effect d p , S p X N f q / p ( xa ,k a ) f b / p ( xb ,k b ) q dˆ ab cd (k a ,k b ) D / c ( z , p ) U. D’Alesio, F. Murgia E704 data fit STAR data prediction Higher-twist partonic correlations (Efremov, Teryaev; Qiu, Sterman; Kouvaris, Vogelsang, Yuan) contribution to SSA ( A B h X ) d Ta (k1 , k2 , S ) fb / B ( xb ) H abc (k1 , k2 ) Dh / c ( z) a ,b,c twist-3 functions hard interactions “collinear expansion” at order ki┴ a a Ta Na x (1 x) f a / A ( x) fits of E704 and STAR data Kouvaris, Qiu, Vogelsang, Yuan Gluonic pole cross sections and SSA in H1H 2 h1h2 X Bacchetta, Bomhof, Mulders, Pijlman; Vogelsang, Yuan factorization ? (Collins) (1) ( T f Sivers contribution to SSA a 1T ) d f1T(1) ( x1 ) fb / H1 ( x2 ) dˆ[ a]bcd Dh1 / c ( z1 ) Dh2 / d ( z2 ) a ,b,c gluonic pole cross sections take into account gauge links dˆ[ a ]bcd CG[ D]dˆ abD cd D (breaking of factorization?) CG[D] Diagram dependent Gauge link Colour factors Gluonic pole cross sections and SSA in H1H 2 h1h2 X to be compared with the usual cross section dˆ l[ q ]lq dˆ lqlq dˆ[ q ]q l l dˆ qq l l Non-universality of Sivers Asymmetries: Unique Prediction of Gauge Theory ! Simple QED example: DIS: attractive Same in QCD: As a result: Drell-Yan: repulsive TMDs and SSAs in Drell-Yan processes (returning to safer grounds and looking at future ….) l+ l– γ* p d D Y qT qL factorization holds, two scales, M2, and Q2 = M 2 p qT q f q ( x1 , k ; Q ) f q ( x2 , k ; Q ) dˆ 2 2 qq l l Unpolarized cross section already very interesting 1 d 3 1 2 2 2 1 cos sin cos sin cos 2 d 4 3 2 Collins-Soper frame (Polarized) Drell-Yan cross sections allow to access many TMDs (Boer-Mulders, …) D-YLAND q f verify whether 1T SIDIS f1Tq D Y !!! and offer the golden channel to measure the transversity distribution ATT h1q ( x1 ) h1q ( x2 ) q Talks by R. Kaiser, M. Contalbrigo Conclusions Increasing knowledge about quark transverse motion, and spin-k┴ correlations (Sivers function) First experimental information on h1 Work in progress on GPDs and quark space distribution (Lq) Towards resolving the orbital motion of quarks in a proton … More data from HERMES, COMPASS, JLab and RHIC Thanks